首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When hepatocytes were freshly isolated from rat liver and incubated for various periods of time at 37 degrees C, the media from the incubation, when completely separated from the cells, actively degraded 125I-insulin. THis soluble protease activity was strongly inhibited by bacitracin but was unaffected by the lysosomatropic agent ammonium chloride (NH4Cl). When hepatocytes were incubated with 125I-insulin at 37 degrees C in the presence or absence of 8 mM NH4Cl the ligand initially bound to the plasma membrane and was subsequently internalized as a function of time. When hepatocytes were incubated at 37 degrees C for 30 minutes with 125I-insulin in the presence of bacitracin and NH4Cl or bacitracin alone and the cells were washed, diluted, and the cell-bound radioactivity allowed to dissociate, the percent intact 125I-insulin in the cell pellet and in the incubation media was greater in the presence of NH4Cl at each time point of incubation. Under these same conditions a higher proportion of the cell-associated radioactivity was internalized and a higher proportion was associated with lysosomes. The data suggest that receptor-mediated internalization is required for insulin degradation by the cell, and that this process, at least in part, involves lysosomal enzymes. Furthermore, the data demonstrate that internalization is not blocked by the presence of bacitracin or NH4Cl in the incubation media, but that degradation is inhibited.  相似文献   

2.
Binding and processing of (125)I-ACTH by isolated rat splenic lymphocytes   总被引:1,自引:0,他引:1  
The effect of incubation temperature and ligand competition was tested for (125)I-ACTH binding to isolated rat lymphocytes. AlphaMSH but not Agouti-like peptide was an effective competitive inhibitor for cell surface binding at 4 degrees C. Cells incubated with (125)I-ACTH at 37 degrees C rapidly associated ligand for 10 min and then gradually lost the radioactivity with time. Cells incubated with (125)I-ACTH at 4 degrees C accumulated ligand to only about half the maximal amount when compared to cells incubated at 37 degrees C for 10 min. Temperatures below 20 degrees C and toxins that block lysosomal degradation blocked the loss of cell-associated radioactivity. These results suggest the lymphocyte ACTH receptor is the Melanocortin 5 receptor and the receptor is internalized by endocytosis to deliver ligand to the lysosome.  相似文献   

3.
Cholecystokinin (CCK) receptors were investigated in the tumoral acinar cell line AR 4-2 J derived from rat pancreas, after preincubation with 20 nM dexamethasone. At steady state binding at 37 degrees C (i.e., after a 5 min incubation), less than 10% of the radioactivity of [125I]BH-CCK-9 (3-(4-hydroxy-[125I]iodophenyl)propionyl (Thr34, Nle37) CCK(31-39)) could be washed away from intact cells with an ice-cold acidic medium, suggesting high and rapid internalization-sequestration of tracer. By contrast, more than 85% of the tracer dissociated rapidly after a similar acid wash from cell membranes prelabelled at steady state. In intact AR 4-2 J cells, internalization required neither energy nor the cytoskeleton framework. Tracer internalization was reversed partly but rapidly at 37 degrees C but slowly at 4 degrees C. In addition, two degradation pathways of the tracer were demonstrated, one intracellular and one extracellular. Intracellular degradation occurred at 37 degrees C but not at 20 degrees C and resulted in progressive intracellular accumulation of [125I]BH-Arg that corresponded, after 1 h at 37 degrees C, to 35% of the radioactivity specifically bound. This phenomenon was not inhibited by serine proteinase inhibitors and modestly only by monensin and chloroquine. Besides, tracer degradation at the external cell surface was still observable at 20 degrees C and yielded a peptide (probably [125I]BH-Arg-Asp-Tyr(SO3H)-Thr-Gly). This degradation pathway was partly inhibited by bacitracin and phosphoramidon while thiorphan, an inhibitor of endopeptidase EC 3.4.24.11, was without effect.  相似文献   

4.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37 degrees C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37 degrees C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37 degrees C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37 degrees C, 80% of the cell-bound radioactivity was not extractable from GH3, cells with acetic acid.  相似文献   

5.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

6.
The importance of plasma HDL apolipoprotein concentration as a predictor of atherosclerotic risk is well recognized, yet the processes of HDL modification and degradation in various cells are not clearly understood. We examined the characteristics of HDL1 apolipoprotein degradation and cellular uptake by rat adipocytes and determined the effects of fasting on these processes. Epididymal and perirenal adipocytes were isolated from male Wistar rats (310 +/- 4 g) fed ad libidum and incubated with 5 micrograms of rat 125I-labeled HDL1 (d: 1.07-1.10 g/mL) mL-1 for 2 h at 37 degrees C. Cellular uptake of HDL1 was calculated as the trichloroacetic acid precipitable radioactivity associated with adipocytes following incubation. Intracellular and medium degradation of HDL1 were determined as trichloroacetic acid soluble 125I counts associated with cells and measured in the postincubation medium, respectively. Fifty to sixty percent of cellular uptake and degradation of HDL1 was inhibited by the addition of 25-fold excess unlabeled HDL. HDL1 degradation measured in the medium was 10- to 12-fold greater than cellular uptake of HDL1 apolipoproteins. Intracellular degradation of HDL1 was negligible. The presence of EDTA in the incubation medium reduced HDL1 degradation measured in the medium, but enhanced HDL1 cellular uptake. Conditioned medium separated from cells after 2 h of incubation at 37 degrees C in the absence of HDL and subsequently incubated with 125I-labeled HDL1 for an additional 2 h at 37 degrees C, degraded less than 5% of HDL compared with degradation in the presence of cells. These results suggest that rat adipocytes degrade, or modify, HDL1 particles, possibly by interactions with cell surface proteases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The ability of rat hepatocytes to degrade internalized surface-bound 125I-asialoorosomucoid (ASOR) was determined by measuring the appearance of acid-soluble radioactivity at 37 degrees C. The degradation kinetics were biphasic in cells previously equilibrated at 37 degrees C for 1 h or cultured for 24 h. Degradation began immediately and was linear for at least 20 min after which the rate increased to a steady state value 3-4 times greater than the initial rate. We previously showed that hepatocytes have two functionally distinct populations of galactosyl receptors that mediate ligand dissociation by two kinetically different pathways (Weigel, P. H., Clarke, B. L., and Oka, J. A. (1986) Biochem. Biophys. Res. Commun. 140, 43-50). The activity of one receptor population, designated State 2 galactosyl receptors, can be reversibly modulated by incubating cells between 22 and 37 degrees C and is not expressed on the surface of freshly isolated cells. When 125I-ASOR was prebound to freshly isolated cells at 4 degrees C and degradation was assessed subsequently at 37 degrees C, the kinetics were monophasic, not biphasic. Degradation of the surface-bound 125I-ASOR began immediately and was greater than 90% complete by 6 h. Freshly isolated cells were incubated at temperatures between 22 and 37 degrees C, chilled to 4 degrees C, allowed to pre-bind 125I-ASOR, and then incubated at 37 degrees C. As the State 2 galactosyl receptor population increased, the kinetics of degradation became progressively more biphasic and the rate of the delayed degradation process increased. This effect could be reversed in cells in culture or in suspension by down-modulating surface receptor activity at temperatures below 37 degrees C; only the degradation process appearing after a 20-min lag was affected. Degradation in both pathways is an apparent first order process with identical rate constants (kappa = 0.006 min-1, t1/2 = 116 min). We conclude that there are two separate pathways by which asialoglycoproteins are degraded. The major "classic" pathway mediated by State 2 galactosyl receptors occurs after a 20-min lag and the minor pathway mediated by State 1 galactosyl receptors begins immediately with no detectable lag.  相似文献   

8.
There is morphological and biochemical evidence that insulin is internalized in hepatocytes. The present study was designed to investigate the fate of the insulin receptor itself, subsequently to the initial binding step of the hormone to the hepatocyte plasma membrane. The insulin receptor was labeled with a 125I-photoreactive insulin analogue (B2[2-nitro,4-azidophenylacetyl]des-PheB1-insulin). This photoprobe was covalently coupled to the receptor by UV irradiation of hepatocytes after an initial binding step of 2-4 h at 15 degrees C. At this temperature, only limited (approximately 20%) internalization of the ligand occurred. In a second step, hepatocytes were resuspended in insulin-free buffer and further incubated for 2-4 h at 37 degrees C. After h at 37 degrees C, no significant radioactivity could be detected in non-UV-irradiated cells, whereas 12-15 % of the radioactivity initially bound remained associated to UV-irradiated cells. Morphological analysis after electron microscopy revealed that approximately 70% of this radioactivity was internalized and preferentially associated with lysosomal structures. SDS PAGE analysis under reducing conditions revealed that most of the radioactivity was associated with a 130,000-dalton band, previously identified as the major subunit of the insulin receptor in a variety of tissues. Internalization of the labeled insulin-receptor complex at the end of the 37 degrees C incubation was further demonstrated by its inaccessibility to trypsin. Conversely, at the end of the association step, the receptor (also characterized as a predominant 130,000-dalton species) was localized on the cell surface since it was cleaved by trypsin. We conclude that in hepatocytes the insulin receptor is internalized with insulin.  相似文献   

9.
Bombesin is a tetradecapeptide which stimulates insulin secretion in vivo by isolated islets and by HIT-T15 cells, a clonal line of hamster pancreatic-islet cells. In the present study we have used [125I-Tyr4]bombesin to characterize bombesin receptors in HIT-T15 cells. [125I-Tyr4]Bombesin binding was time- and temperature-dependent: maximum binding occurred after 45 min, 90 min and 10 h at 37, 22 and 4 degrees C respectively. Thereafter, cell-associated radioactivity declined at 37 degrees C and 22 degrees C but not at 4 degrees C. Scatchard analysis of [125I-Tyr4]bombesin binding measured at 4 degrees C showed that HIT-T15 cells contain a single class of binding sites (approximately equal to 85000/cell) with an apparent Kd of 0.9 +/- 0.11 nM. Structurally unrelated neuropeptides did not compete for [125I-Tyr4]bombesin binding. However, the relative potencies of bombesin and four bombesin analogues in inhibiting the binding of [125I-Tyr4]bombesin correlated with their ability to stimulate insulin release. Receptor-mediated processing of [125I-Tyr4]bombesin was examined by using an acid wash (0.2 M-acetic acid/0.5 M-NaCl, pH 2.5) to dissociate surface-bound peptide from the cells. Following [125I-Tyr4]bombesin binding at 4 degrees C, more than 85% of the cell-associated radioactivity could be released by acid. When the temperature was then increased to 37 degrees C, the bound radioactivity was rapidly (t1/2 less than 3 min) converted into an acid-resistant state. These results indicate that receptor-bound [125I-Tyr4]bombesin is internalized in a temperature-dependent manner. In fact, the entire ligand-receptor complex appeared to be internalized, since pretreatment of cells with 100 nM-bombesin for 90 min at 37 degrees C decreased the subsequent binding of [125I-Tyr4]bombesin by 90%. The chemical nature of the cell-associated radioactivity was determined by reverse-phase chromatography of the material extracted from cells after a 30 min binding incubation at 37 degrees C. Although 70% of the saturably bound radioactivity was co-eluted with intact [125I-Tyr4]bombesin 90% of the radioactivity subsequently dissociated from cells chromatographed as free iodide. At least some of the degradation of receptor-bound [125I-Tyr4]bombesin appeared to occur in lysosomes, since chloroquine increased the cellular accumulation of [125I-Tyr4]bombesin at 37 degrees C and slowed the release of radioactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Diacytosis of 125I-asialoorosomucoid by rat hepatocytes was studied by preincubating the cells with the labelled ligand at 37 degrees C for 30 min or 18 degrees C for 2 h, washing free of cell surface receptor-bound tracer at 4 degrees C and then reincubating at 37 degrees C. The cells preloaded at 37 degrees C released a maximum of 18% of the total intracellular ligand as undegraded molecules after 1 h of incubation with an apparent first-order rate constant of 0.018 min-1 (t1/2 = 39 min). When the preloaded cells were incubated in the presence of 100 micrograms/ml unlabelled asialoorosomucoid or 5 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, the amount of the released ligand increased to 32 and 37%, respectively, without apparent change in kinetics, indicating that these agents prevented rebinding of the released ligand. In the presence of 5 microM colchicine, 20 microM cytochalasin B, 20 microM chloroquine, 10 mM NH4Cl, 10 microM monensin or 20 microM leupeptin, degradation of the preloaded ligand was inhibited, whereas the release of the ligand was either slightly increased or unchanged. Similar effects of leupeptin, colchicine and asialoorosomucoid were observed with cells preloaded at 18 degrees C. These results indicate that diacytosis of 125I-asialoorosomucoid occurs from a prelysosomal compartment via a route insensitive to inhibition by the inhibitors of ligand degradation.  相似文献   

11.
125I-labelled pregnancy zone protein complex was injected intravenously in rats and after 6 min uptake into cells of the liver and spleen was determined by electron microscopic autoradiography. The liver took up 68% of the injected radioactivity; 61% was in the hepatocytes and 7% was in the liver macrophages (Kupffer cells). The spleen took up 3-4% and nearly all the radioactivity was in the macrophages of the red pulp. The uptake per cell volume was several times higher in the macrophage than in the hepatocyte. The radioactivity associated with macrophages was largely in endocytotic vacuoles and lysosomes. Binding of labelled pregnancy zone protein complex to peritoneal macrophages at 4 degrees C was 2-3 times higher than binding of the homologous alpha 2-macroglobulin complex. The two ligands competed for binding to the same receptors and the difference was due to a higher affinity of the pregnancy zone protein complex (Kd approx. 60 pM). After binding to the receptor, this ligand was internalised within 2-3 min at 37 degrees C and radioactivity inside the cells largely represented intact pregnancy zone protein complex. Radioactivity was released from the cell as iodotyrosine after a lag time of about 10 min. It is concluded that pregnancy zone protein complex is bound with a high affinity to the alpha 2-macroglobulin receptors in rat macrophages followed by receptor-mediated endocytosis and degradation of the ligand in the lysosomes.  相似文献   

12.
125I-human growth hormone (125I-hGH) binds specifically to receptors on cultures human lymphocytes (IM-9). When this process is studied by use of quantitative EM radioautography, under conditions of incubation at 15 degrees C for 5 min, the ligand is localized to the plasma membrane of the cell. At 30 degrees and 37 degrees C, however, 125I-hGH is progressively internalized by the cell as a function of time. The internalized ligand is found predominantly in the Golgi region of the cells, with a five-fold preferential localization to membrane-bounded structures with the morphological and cytochemical characteristics of lysosomes. Up to 59% of these lysosome-like structures are positive for the acid phosphatase reaction under the conditions of incubation at 37 degrees C for 120 min. When the cell associated radioactivity after 15- 120 min of incubation at 37 degrees C is extracted in 1 M acetic acid and filtered on a Sephadex G-100 column, 58-73% of the material elutes as intact hGH. When cells are incubated with 125I-hGH at 37 degrees C for 15-120 min, separated from the incubation medium, and washed and diluted 100-fold, the percent 125I-hGH dissociable decreases as a function of increasing time of incubation. When cells are incubated with 125I-hGH for 15 min at 37 degrees C and the radioactivity that dissociates from the cells during 15-90 min is studied, the labeled material appearing in the incubation medium is progressively degraded as a function of time of incubation. When the dissociation process is studied radioautographically, grains are found both in plasma membrane and intracelluar compartments after 30 min of association, but after 30 and 120 min of dissociation a higher proportion of grains are in the intracellular compartment. After 120 min of association, there is less dissociation from either compartment and a preferential increase of grains in the intracellular compartment. These data suggest that receptor-linked internalization of a polypeptide hormone provides a mechanism that couples degradation of the ligand with loss of the cell surface receptor.  相似文献   

13.
The mode of transport of ceruloplasmin (CP) into the liver was investigated in fractionated liver cell suspensions. Incubation of 125I-CP at 4 degrees C with these different fractions led to its binding only to endothelial cells but not Kupffer cells and hepatocytes. Incubation at 37 degrees C led to rapid uptake of 125I-CP by endothelium, but cell-associated radioactivity declined after 15 min, which suggests the release of the labeled substance. Internalization was confirmed by fractionation of surface-bound and internalized ligand. The released label now acquired binding potential for fresh target hepatocytes, and the binding was inhibitable with asialoceruloplasmin but not native CP. This suggested that the released molecule was modified in the endothelium by desialation. Desialation was confirmed by incubation of endothelium with double-labeled CP (3H label on sialic acid and 125I on the protein part). We conclude that in the liver, CP is first recognized and taken up by endothelial cells that are endowed with appropriate surface receptors for the protein. Endothelium then modifies the molecule by desialation to expose the penultimate galactosyl residues. The modified molecule is then released, recognized, and taken up by hepatocytes through their membrane galactosyl-recognition system. These findings are consistent with the role of endothelium as an active mediator of molecular transport between blood and tissue, and further assign a biological role for the galactosyl-recognition system in hepatocytes.  相似文献   

14.
Binding, internalization, and degradation of 125I-labeled-rat atrial natriuretic peptide (rANP) were studied in cultured rat aortic vascular smooth muscle cells (VSMC). At 37 degrees C, 125I-labeled-rANP rapidly bound to VSMCs, but the cell-bound radioactivity rapidly decreased upon subsequent incubation, while the binding was slow at 4 degrees C, reaching to an apparent equilibrium after 6 hrs. The cell-bound 125I-labeled-rANP at 37 degrees C is rapidly dissociated from VSMC (t 1/2: approximately 40 min) with the appearance of degradaded product(s) of radioligand in the medium, whereas the degradation was minimal at 4 degrees C. This degradative process was blocked by inhibitors of metabolic energy production (azide, dinitrophenol), inhibitors of lysosomal cathepsins (leupeptin, pepstatin), and lysosomotropic agents (NH4Cl, chloroquine, lidocaine, methylamine, dansylcadaverine), but not by inhibitors of serine or thiol proteases. 125I-labeled-rANP initially bound to the cell-surface was rapidly internalized, and delivered to lysosomal structures, which was confirmed by autoradiographic studies. These data indicate that rANP, after binding to the cell-surface receptors, is rapidly internalized into the cells through receptor-mediated endocytosis, and subsequently degradaded by lysosomal hydrolases.  相似文献   

15.
Binding of porcine interleukin 1, radiolabeled with Bolton-Hunter reagent (125I IL 1), to monolayers of porcine synovial fibroblasts (PSF) was found to be a temperature-dependent process. The rate of uptake and the amount of cell-associated ligand was higher at 37 degrees C than at 4 degrees C or 19 degrees C, and exceeded the apparent equilibrium binding capacity. The amount of bound 125I IL 1 that was removed by brief treatment with acidic buffers decreased from 80% at 4 degrees C to 35% for PSF incubated at 37 degrees C; this procedure was used to distinguish surface-bound from internalized ligand. In untreated PSF, surface binding was maximal at 1 hr and was maintained for at least 5 hr during which time the internal pool continued to increase. The lysosomotropic agent methylamine (20 mM) decreased surface binding by 50%; monensin (20 microM) decreased the rate and extent of internalization. Cycloheximide (10 micrograms/ml) did not affect ligand uptake, hence, continual expression of surface receptors could not be ascribed to their de novo synthesis. 40% of the radioactivity taken up by PSF during incubation at 37 degrees C subsequently appeared in the culture medium upon prolonged postincubation (5 hr) in the absence of added 125I IL 1: 60% of this fraction was trichloroacetic acid-soluble in untreated cultures, but the extent of degradation was halved by treatment with methylamine or monensin. Direct measurement of the rate of internalization of prebound 125I IL 1 was obtained by monitoring the formation of covalently cross-linked ligand-receptor complexes after warming PSF monolayers to 37 degrees C. By using gel electrophoresis we observed a decrease (t1/2 = 9 to 11 min) in labeling of the major cross-linkable species.  相似文献   

16.
G F Rush  D Alberts 《Life sciences》1987,40(7):679-685
Hepatocytes are known to bind and internalize a variety of small molecular weight proteins by a process known as receptor-mediated endocytosis (RME). The purpose of this investigation was to characterize the binding and uptake kinetics of a small protein known to be taken up by the liver by RME, epidermal growth factor (EGF), using suspensions of freshly isolated rat hepatocytes. Rat hepatocytes accumulated 125I-EGF (90 pM) in a temperature-dependent fashion. Isolated hepatocytes incubated at 37 degrees C with 125I-EGF began to release a TCA-soluble radiolabeled material into the incubation medium with a lag period of 20 min. EGF uptake by isolated hepatocytes was linear for only 60 seconds and displayed saturation kinetics (apparent Km of 4 nM and a Vmax of 105 fM/min/10(6) cells). Hepatocytes incubated at 4 degrees C bound, but did not internalize, EGF. Under these conditions, EGF binding was saturable at concentrations above 8 nM. A Scatchard analysis revealed that the average number of receptors per hepatocyte was 7.7 X 10(4) with a dissociation constant of 2.6 nM. These data demonstrate that freshly isolated hepatocytes are capable of binding, internalizing and metabolizing EGF and thus are a good model to study RME of small molecular weight proteins.  相似文献   

17.
Receptors for alpha 2-macroglobulin-proteinase complexes have been characterized in rat and human liver membranes. The affinity for binding of 125I-labelled alpha 2-macroglobulin.trypsin to rat liver membranes was markedly pH-dependent in the physiological range with maximum binding at pH 7.8-9.0. The half-time for association was about 5 min at 37 degrees C in contrast to about 5 h at 4 degrees C. The half-saturation constant was about 100 pM at 4 degrees C and 1 nM at 37 degrees C (pH 7.8). The binding capacity was approx. 300 pmol per g protein for rat liver membranes and about 100 pmol per g for human membranes. Radiation inactivation studies showed a target size of 466 +/- 71 kDa (S.D., n = 7) for alpha 2-macroglobulin.trypsin binding activity. Affinity cross-linking to rat and human membranes of 125I-labelled rat alpha 1-inhibitor-3.chymotrypsin, a 210 kDa analogue which binds to the alpha 2-macroglobulin receptors in hepatocytes (Gliemann, J. and Sottrup-Jensen, L. (1987) FEBS Lett. 221, 55-60), followed by SDS-polyacrylamide gel electrophoresis, revealed radioactivity in a band not distinguishable from that of cross-linked alpha 2-macroglobulin (720 kDa). This radioactivity was absent when membranes with bound 125I-alpha 1-inhibitor-3 complex were treated with EDTA before cross-linking and when incubation and cross-linking were carried out in the presence of a saturating concentration of unlabelled complex. The saturable binding activity was maintained when membranes were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonate (CHAPS) and the size of the receptor as estimated by cross-linking experiments was shown to be similar to that determined in the membranes. It is concluded that liver membranes contain high concentrations of an approx. 400-500 kDa alpha 2-macroglobulin receptor soluble in CHAPS. The soluble preparation should provide a suitable material for purification and further characterization of the receptor.  相似文献   

18.
125I-Labelled alpha 2-macroglobulin-trypsin complex (125I-labelled alpha 2-macroglobulin X trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37 degrees C. The association of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin X trypsin was inhibited by unlabelled alpha 2-macroglobulin X trypsin with a half-inhibition constant of about 8 micrograms/ml (11 nM). 125I-Labelled alpha 2-macroglobulin became cell-associated to a smaller extent (10-40% of that of alpha 2-macroglobulin X trypsin) and the half-inhibition constant was about 35 micrograms/ml in adipocytes. The cell association of 125I-labelled alpha 2-macroglobulin X trypsin was markedly inhibited by dansylcadaverine, bacitracin, omission of Ca2+ from the medium or pretreatment of the cells with trypsin. After incubation for 180 min more than 60% of the cell-associated 125I-labelled alpha 2-macroglobulin X trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized material. 125I-Labelled alpha 2-macroglobulin X trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin was approx. 40% of that of 125I-labelled alpha 2-macroglobulin X trypsin. Degradation of 125I-labelled alpha 2-macroglobulin X trypsin was abolished by a high concentration (0.5 mg/ml) of alpha 2-macroglobulin X trypsin. It is concluded that alpha 2-macroglobulin X trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

19.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

20.
Isolation and separation of rat liver cells into endothelial, Kupffer, and parenchymal cell fractions were performed at different times after injection of human 125I-acetyl low density lipoproteins (LDL). In order to minimize degradation and redistribution of the injected lipoprotein during cell isolation, a low temperature (8 degrees C) procedure was applied. Ten min after injection, isolated endothelial cells contained 5 times more acetyl-LDL apoprotein per mg of cell protein than the Kupffer cells and 31 times more than the hepatocytes. A similar relative importance of the different cell types in the uptake of acetyl-LDL was observed 30 min after injection. For studies on the in vitro interaction of endothelial and Kupffer cells with acetyl-LDL, the cells were isolated with a collagenase perfusion at 37 degrees C. Pure endothelial (greater than 95%) and purified Kupffer cells (greater than 70%) were obtained by a two-step elutriation method. It is demonstrated that the rat liver endothelial cell possesses a high affinity receptor specific for the acetyl-LDL because a 35-fold excess of unlabeled acetyl-LDL inhibits association of the labeled compound for 70%, whereas unlabeled native human LDL is ineffective. Binding to the acetyl-LDL receptor is coupled to rapid uptake and degradation of the apolipoprotein. Addition of the lysosomotropic agents chloroquine (50 microM) or NH4Cl (10 mM) resulted in more than 90% inhibition of the high affinity degradation, indicating that this occurs in the lysosomes. With the purified Kupffer cell fraction, the cell association and degradation of acetyl-LDL was at least 4 times less per mg of cell protein than with the pure endothelial cells. Although cells isolated with the cold pronase technique are also still able to bind and degrade acetyl-LDL, it appeared that 40-60% of the receptors are destroyed or inactivated during the isolation procedure. It is concluded that the rat liver endothelial cell is the main cell type responsible for acetyl-LDL uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号