首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visual stimuli evoke fast-evolving activity patterns that are distributed across multiple cortical areas. These areas are hierarchically structured, as indicated by their anatomical projections, but how large-scale feedforward and feedback streams are functionally organized in this system remains an important missing clue to understanding cortical processing. By analyzing visual evoked responses in laminar recordings from 6 cortical areas in awake mice, we uncovered a dominant feedforward network with scale-free interactions in the time domain. In addition, we established the simultaneous presence of a gamma band feedforward and 2 low frequency feedback networks, each with a distinct laminar functional connectivity profile, frequency spectrum, temporal dynamics, and functional hierarchy. We could identify distinct roles for each of these 4 processing streams, by leveraging stimulus contrast effects, analyzing receptive field (RF) convergency along functional interactions, and determining relationships to spiking activity. Our results support a dynamic dual counterstream view of hierarchical processing and provide new insight into how separate functional streams can simultaneously and dynamically support visual processes.

Visual stimuli evoke fast-evolving activity patterns that are distributed across multiple cortical areas, but how large-scale feedforward and feedback streams are functionally organized in this system remains unclear. Visual evoked responses in laminar recordings from six cortical areas in awake mice reveal how layers and rhythms dynamically orchestrate functional streams in vision.  相似文献   

2.
High-resolution tracing of projections from the olfactory bulb to its cortical targets revealed coarse topography and stereotopy in some areas but highly distributed, combinatorial connectivity in others. These results provide a basis for understanding innate and associative olfactory processing and perception.  相似文献   

3.
4.
We studied projections from extrastriate visual areas and the superior colliculus to the pontine nuclei of monkeys using degeneration staining and transport of wheatgerm agglutinin horseradish peroxidase, and 3H amino acids. The superior colliculus and the extrastriate cortical visual areas both project to the ipsilateral dorsolateral region of the pontine nuclei. The projections from extrastriate visual cortex occupy a much larger territory within the pontine nuclei than those from the superior colliculus. The superficial laminae of the superior colliculus project only to the ipsilateral pontine nuclei. The projection to the contralateral nucleus reticularis tegmenti pontis arises from cells in deeper laminae within the superior colliculus.  相似文献   

5.
The cortical connections of the dorsal (PMd) and ventral (PMv) subdivisions of the premotor area (PM, lateral area 6) were studied in four monkeys (Macaca fascicularis) through the use of retrograde tracers. In two animals, tracer was injected ventral to the arcuate sulcus (PMv), in a region from which forelimb movements could be elicited by intracortical microstimulation (ICMS). Tracer injections dorsal to the arcuate sulcus (PMd) were made in two locations. In one animal, tracer was injected caudal to the genu of the arcuate sulcus (in caudal PMd [cPMd], where ICMS was effective in eliciting forelimb movements); in another animal, it was injected rostral to the genu of the arcuate sulcus (in rostral PMd [rPMd], where ICMS was ineffective in eliciting movements). Retrogradely labeled neurons were counted in the ipsilateral hemisphere and located in cytoarchitectonically identified areas of the frontal and parietal lobes. Although both PMv and PMd were found to receive inputs from other motor areas, the prefrontal cortex, and the parietal cortex, there were differences in the topography and the relative strength of projections from these areas.

There were few common inputs to PMv and PMd; only the supplementary eye fields projected to all three areas studied. Interconnections within PMd or PMv appeared to link hindlimb and forelimb representations, and forelimb and face representations; however, connections between PMd and PMv were sparse. Areas cPMd and PMv were found to receive inputs from other motor areas—the primary motor area, the supplementary motor area, and the cingulate motor area—but the topography and strength of projections from these areas varied. Area rPMd was found to receive sparse inputs, if any, from these motor areas. The frontal eye field (area 8a) was found to project to PMv and rPMd, and area 46 was labeled substantially only from rPMd. Parietal projections to PMv were found to originate from a variety of somatosensory and visual areas, including the second somatosensory cortex and related areas in the parietal operculum of the lateral sulcus, as well as areas 5, 7a, and 7b, and the anterior intraparietal area. By contrast, projections to cPMd arose only from area 5. Visual areas 7m and the medial intraparietal area were labeled from rPMd. Relatively more parietal neurons were labeled after tracer injections in PMv than in PMd. Thus, PMv and PMd appear to be parts of separate, parallel networks for movement control.  相似文献   

6.
The projections to the retrosplenial cortex (areas 29 and 30) from the hippocampal formation, the entorhinal cortex, perirhinal cortex, and amygdala were examined in two species of macaque monkey by tracking the anterograde transport of amino acids. Hippocampal projections arose from the subiculum and presubiculum to terminate principally in area 29. Label was found in layer I and layer III(IV), the former seemingly reflecting both fibers of passage and termination. While the rostral subiculum mainly projects to the ventral retrosplenial cortex, mid and caudal levels of the subiculum have denser projections to both the caudal and dorsal retrosplenial cortex. Appreciable projections to dorsal area 30 [layer III(IV)] were only seen following an extensive injection involving both the caudal subiculum and presubiculum. This same case provided the only example of a light projection from the hippocampal formation to posterior cingulate area 23 (layer III). Anterograde label from the entorhinal cortex injections was typically concentrated in layer I of 29a-c, though the very caudal entorhinal cortex appeared to provide more widespread retrosplenial projections. In this study, neither the amygdala nor the perirhinal cortex were found to have appreciable projections to the retrosplenial cortex, although injections in either medial temporal region revealed efferent fibers that pass very close or even within this cortical area. Finally, light projections to area 30V, which is adjacent to the calcarine sulcus, were seen in those cases with rostral subiculum and entorhinal injections. The results reveal a particular affinity between the hippocampal formation and the retrosplenial cortex, and so distinguish areas 29 and 30 from area 23 within the posterior cingulate region. The findings also suggest further functional differences within retrosplenial subregions as area 29 received the large majority of efferents from the subiculum. ? 2012 Wiley Periodicals, Inc.  相似文献   

7.
The mechanism of involvement of the basal ganglia in processing of visual information on the basis of dopamine-dependent modulation of efficacy of synaptic transmission in interconnected parallel associative and limbic loops (cortex--basal ganglia--thalamus--cortex) is proposed. Each loop consists of one of the visual or prefrontal cortical areas connected with the thalamic nucleus and corresponding loci in different nuclei of the basal ganglia. Circulation of activity in such a loop provides reentrance of information into the thalamus and neocortex. Dopamine releasing in response to a visual stimulus oppositely modulates the efficacy of "strong" and "weak" corticostriatal inputs. Subsequent reorganization of activity in the loop leads to a disinhibition (inhibition) of activity of those cortical neurons that were "strongly" ("weakly)" excited by the visual stimulus simultaneously with activation of dopaminergic cells. A selected neuronal pattern in each cortical area represents a property of the visual stimulus processed by this area. Excitation of dopaminergic cells by the visual stimulus via the superior colliculi requires parallel activation of a disinhibitory input to the superior colliculi via the thalamus and a "direct" pathway through the basal ganglia. The prefrontal cortex excited by the visual stimulus via the mediodorsal thalamic nucleus performs a top-down control over the dopaminergic cell activity, supervising simultaneous dopamine release in different striatal loci and thus promotes the interconnected selection of neuronal representations of individual properties of the visual stimulus and their binding in an integrated image.  相似文献   

8.
By the method of axonal transport of the retrograde markers, the afferent projections, coming from functionally different cortical and subcortical structures to various segments of the caudate nucleus, were investigated in the putamen and the nucleus accumbens of the dog brain. On the basis of the determined peculiarities of the spatail organization of these projections, the morphological aspects of the segregated and convergent conducting and processing of the information in the striatum, which underlie their functioning, were analyzed.  相似文献   

9.
Projections from the parietal cortex (areas 5 and 7) to subdivisions of the sensori-motor cortical region were investigated in cats using axonal degeneration techniques. Differences between the density of distribution of association fibers proceeding from these areas were found within the parietal and sensorimotor cortex. Area 5 projects mainly to the posterolateral portion of the cruciate sulcus (areas 4fu and 4) and to fields 4y, 4sfu, 6iffu, 6aa, and 6ab to a lesser extent. Area 7 is connected mainly to the medial portion of the lower lip of the cruciate sulcus (areas 6iffu, 6aa, and 6ab). Somewhat fewer fibers proceed to areas 4fu and 4. Fewer projections proceed from the parietal cortex to the somatosensory than to the motor region. Only a few single fibers connect the primary somatosensory region (fields 2, 3a, and 3b) with area 5, while area 7 does not project into this area. Neither field 5 nor 7 projects to the secondary somatosensory cortical area.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 319–326, May–June, 1988.  相似文献   

10.
Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction.  相似文献   

11.
A combined anatomical and physiological strategy was used to investigate the organization of the corticocuneate pathway in the cat. The distribution of the corticocuneate projection was mapped by means of the anterograde horseradish peroxidase (HRP) labeling technique and correlated with the nuclear cytoarchitecture in Nissl and Golgi material, the distribution of retrogradely labeled relay cells after HRP injections in the ventrobasal complex of the thalamus, and the topographic organization derived from single-and multiunit recordings in the decerebrate, unanesthetized cat. This approach provided details about the arrangement of the corticocuneate pathway that were not available from previous studies with anterograde degeneration methods.

On the basis of cytoarchitectonic and connectional features, a number of subdivisions are identified in the cuneate nucleus, each of which is associated with characteristic functional properties. In agreement with previous studies, it is found that a large portion of the cuneate nucleus, the middle dorsal part (MCd), is exclusively devoted to the representation of cutaneous receptive fields on the digits. This “core” region contains more thalamic projecting neurons than any other subdivision of the cuneate nucleus. A topographic arrangement also exists in the subdivisions of the rostral cuneate and of the nuclear region ventral to MCd, although in these, receptive fields are larger and predominantly, but not exclusively, related to deep receptors and involve the arm, shoulder, and trunk.

Observations on corticocuneate projections were based on injections, mainly focused on functional subdivisions of the primary somatosensory cortex (SI) as described by McKenna et al (1981). Although cortical projections are mainly to cuneate regions other than its core, a significant proportion of fibers from the region of SI where the digits are represented (particularly area 3b) do project to the MCd region of the cuneate nucleus. Similarly, nuclear areas associated with receptive fields on the arm and trunk are labeled after injection in SI arm and trunk regions, respectively. Thus, a close topographic relationship appears to exist between the somatosensory cortex and cuneate regions related to the same body representation, although nuclear regions in which receptive fields on the neck area are represented receive very sparse or no detectable cortical projections even when the injection of the tracer involves the entire sensorimotor cortex. The topographic arrangement of SI projections upon the cuneate nucleus suggests that a similar pattern exists in both structures with regard to the relative representations of distal versus proximal and deep versus cutaneous receptive fields (e.g., “core” vs. “shell” organization), and that cuneate regions preferentially related to either of these classes of receptive fields receive direct connections from the corresponding regions in SI.

A comparison of the results from cats with tracer injections in areas 4 and 3b reveals that the projections from the former is denser than that arising from the latter and that their territories of termination largely overlap in the ventral portions of the cuneate nucleus. However, cortical projections to MCd may be derived from the somatosensory cortex with no contribution from area 4. The demonstration of the relative selectivity of cortical projections from different cytoarchitectonic and functional cortical areas to cuneate regions identified here provides a structural basis for the elucidation of the physiological and behavioral observations, particularly on cortical modulation of somatosensory transmission during movements.  相似文献   

12.
In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for "core" fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey "third tier" visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas.  相似文献   

13.
At the onset of dynamic movements excitation of the motor cortex (M1) is spatially restricted to areas representing the involved muscles whereas adjacent areas are inhibited. The current study elucidates whether the cortical motor command for dynamic contractions is also restricted to a certain population of cortical neurons responsible for the fast corticospinal projections. Therefore, corticospinal transmission was assessed with high temporal resolution during dynamic contractions after both, magnetic stimulation over M1 and the brainstem. The high temporal resolution could be obtained by conditioning the soleus H-reflex with different interstimulus intervals by cervicomedullary stimulation (CMS-conditioning) and transcranial magnetic stimulation (TMS) of M1 (M1-conditioning). This technique provides a precise time course of facilitation and inhibition. CMS- and M1-conditioning produced an 'early facilitation' of the H-reflex, which occurred around 3 ms earlier with CMS-conditioning. The early facilitation is believed to be caused by activation of direct monosynaptic projections to the spinal motoneurons. CMS-conditioning resulted in a subsequent 'late facilitation', which is considered to reflect activity of slow-conducting and/or indirect corticospinal pathways. In contrast, M1-conditioning produced a 'late dis-facilitation' or even 'late inhibition'. As the late dis-facilitation was only seen following M1- but not CMS-conditioning, it is argued that cortical activation during dynamic tasks is restricted to fast, direct corticospinal projections whereas corticomotoneurons responsible for slow and/or indirectly projecting corticospinal pathways are inhibited. The functional significance of restricting the descending cortical drive to fast corticospinal pathways may be to ensure a temporally focused motor command during the execution of dynamic movements.  相似文献   

14.
Feedback contributions to visual awareness in human occipital cortex   总被引:5,自引:0,他引:5  
It has traditionally been assumed that processing within the visual system proceeds in a bottom-up, feedforward manner from retina to higher cortical areas. In addition to feedforward processing, it is now clear that there are also important contributions to sensory encoding that rely upon top-down, feedback (reentrant) projections from higher visual areas to lower ones. By utilizing transcranial magnetic stimulation (TMS) in a metacontrast masking paradigm, we addressed whether feedback processes in early visual cortex play a role in visual awareness. We show that TMS of visual cortex, when timed to produce visual suppression of an annulus serving as a metacontrast mask, induces recovery of an otherwise imperceptible disk. In addition to producing disk recovery, TMS suppression of an annulus was greater when a disk preceded it than when an annulus was presented alone. This latter result suggests that there are effects of the disk on the perceptibility of the subsequent mask that are additive and are revealed with TMS of the visual cortex. These results demonstrate spatial and temporal interactions of conscious vision in visual cortex and suggest that a prior visual stimulus can influence subsequent perception at early stages of visual encoding via feedback projections.  相似文献   

15.
Transplantation of embryonic or stem cell derived neurons has been proposed as a potential therapy for several neurological diseases. Previous studies reported that transplanted embryonic neurons extended long-distance projections through the adult brain exclusively to appropriate targets. We transplanted E14 lateral ganglionic eminence (LGE) and E15 cortical precursors from embryonic mice into the intact adult brain and analyzed the projections formed by transplanted neurons. In contrast to previous studies, we found that transplanted embryonic neurons formed distinct long-distance projections to both appropriate and ectopic targets. LGE neurons transplanted into the adult striatum formed projections not only to the substantia nigra, a normal target, but also to the claustrum and through all layers of fronto-orbital cortex, regions that do not normally receive striatal input. In some cases, inappropriate projections outnumbered appropriate projections. To examine the relationship between the donor cells and host brain in establishing the pattern of projections, we transplanted cortical precursors into the adult striatum. Despite their heterotopic location, cortical precursors not only predominantly formed projections appropriate for cortical neurons, but they also formed projections to inappropriate targets. Transplantation of GFP-expressing cells into beta-galactosidase-expressing mice confirmed that the axonal projections were not created by the fusion of donor and host cells. These results suggest that repairing the brain using transplantation may be more complicated than previously expected, because exuberant ectopic projections could result in brain dysfunction. Understanding the signals regulating axonal extension in the adult brain will be necessary to harness stem cells or embryonic neurons for effective neuronal-replacement therapies.  相似文献   

16.
The corpus callosum (CC) is the largest commissural white matter tract in mammalian brains, connecting homotopic and heterotopic regions of the cerebral cortex. Knowledge of the distribution of callosal fibers projecting into specific cortical regions has important implications for understanding the evolution of lateralized structures and functions of the cerebral cortex. No comparisons of CC topography in humans and great apes have yet been conducted. We investigated the topography of the CC in 21 chimpanzees using high-resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Tractography was conducted based on fiber assignment by continuous tracking (FACT) algorithm. We expected chimpanzees to display topographical organization similar to humans, especially concerning projections into the frontal cortical regions. Similar to recent studies in humans, tractography identified five clusters of CC fibers projecting into defined cortical regions: prefrontal; premotor and supplementary motor; motor; sensory; parietal, temporal and occipital. Significant differences in fractional anisotropy (FA) were found in callosal regions, with highest FA values in regions projecting to higher-association areas of posterior cortical (including parietal, temporal and occipital cortices) and prefrontal cortical regions (p<0.001). The lowest FA values were seen in regions projecting into motor and sensory cortical areas. Our results indicate chimpanzees display similar topography of the CC as humans, in terms of distribution of callosal projections and microstructure of fibers as determined by anisotropy measures.  相似文献   

17.
The importance of the large number of thin-diameter and unmyelinated axons that connect different cortical areas is unknown. The pronounced propagation delays in these axons may prevent synchronization of cortical networks and therefore hinder efficient information integration and processing. Yet, such global information integration across cortical areas is vital for higher cognitive function. We hypothesized that delays in communication between cortical areas can disrupt synchronization and therefore enhance the set of activity trajectories and computations interconnected networks can perform. To evaluate this hypothesis, we studied the effect of long-range cortical projections with propagation delays in interconnected large-scale cortical networks that exhibited spontaneous rhythmic activity. Long-range connections with delays caused the emergence of metastable, spatio-temporally distinct activity states between which the networks spontaneously transitioned. Interestingly, the observed activity patterns correspond to macroscopic network dynamics such as globally synchronized activity, propagating wave fronts, and spiral waves that have been previously observed in neurophysiological recordings from humans and animal models. Transient perturbations with simulated transcranial alternating current stimulation (tACS) confirmed the multistability of the interconnected networks by switching the networks between these metastable states. Our model thus proposes that slower long-range connections enrich the landscape of activity states and represent a parsimonious mechanism for the emergence of multistability in cortical networks. These results further provide a mechanistic link between the known deficits in connectivity and cortical state dynamics in neuropsychiatric illnesses such as schizophrenia and autism, as well as suggest non-invasive brain stimulation as an effective treatment for these illnesses.  相似文献   

18.
The visual cortex in primates is parcellated into cytoarchitectonically, physiologically, and connectionally distinct areas: the striate cortex (V1) and the extrastriate cortex, consisting of V2 and numerous higher association areas [1]. The innervation of distinct visual cortical areas by the thalamus is especially segregated in primates, such that the lateral geniculate (LG) nucleus specifically innervates striate cortex, whereas pulvinar projections are confined to extrastriate cortex [2--8]. The molecular bases for the parcellation of the visual cortex and thalamus, as well as the establishment of reciprocal connections between distinct compartments within these two structures, are largely unknown. Here, we show that prospective visual cortical areas and corresponding thalamic nuclei in the embryonic rhesus monkey (Macaca mulatta) can be defined by combinatorial expression of genes encoding Eph receptor tyrosine kinases and their ligands, the ephrins, prior to obvious cytoarchitectonic differentiation within the cortical plate and before the establishment of reciprocal connections between the cortical plate and thalamus. These results indicate that molecular patterns of presumptive visual compartments in both the cortex and thalamus can form independently of one another and suggest a role for EphA family members in both compartment formation and axon guidance within the visual thalamocortical system.  相似文献   

19.
The tracts between cortical areas are conceived as playing a central role in cortical information processing, but their actual numbers have never been determined in humans. Here, we estimate the absolute number of axons linking cortical areas from a whole-cortex diffusion MRI (dMRI) connectome, calibrated using the histologically measured callosal fiber density. Median connectivity is estimated as approximately 6,200 axons between cortical areas within hemisphere and approximately 1,300 axons interhemispherically, with axons connecting functionally related areas surprisingly sparse. For example, we estimate that <5% of the axons in the trunk of the arcuate and superior longitudinal fasciculi connect Wernicke’s and Broca’s areas. These results suggest that detailed information is transmitted between cortical areas either via linkage of the dense local connections or via rare, extraordinarily privileged long-range connections.

Using data from Human Connectome Project to estimate the absolute number of axons linking cortical areas yields surprisingly sparse connectivity; reconciling large-scale functional synchronization with sparse anatomical connectivity presents a challenge for our present understanding of human brain organization.  相似文献   

20.
The investigation has demonstrated that in the cat the nucleus caudatus and the putamen are projected on the cortex and thalamic nuclei of the ipsilateral hemisphere according to a certain topical principle characterized by both similarity in localization of projections of these two structures of the neostriatum and their difference. On the one hand, to the same fields of the cortex and the thalamic nuclei fibres from both structures of the neostriatum go, and on the other hand--a number of cortical zones and thalamic nuclei get projections either from the nucleus caudatus or from the putamen only. Owing to a certain organization of the connections studied, it is possible to consider them as the base of functional heterogeneity of the basal ganglia. Over-lapping of the cortical and thalamic projections of the nucleus caudatus and the putamen might explain common striatal effects on behavioral reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号