首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells from the embryonic quail retina were immortalized with the v-mil oncogene and cloned by limiting dilution. Their phenotype was examined using the whole-cell patch clamp method. Three membrane currents, Ik(IR), INa and IK, were found at different frequencies within a sample of 170 cells drawn from a large clone. Nearly all combinations of these three markers were found and the frequency of combinations showed that the markers assorted independently. Examination of clones of less than 10 cells showed that heterogeneity originates with a high probability within clones, arguing that chromosomal mutation, for example, is unlikely to account for phenotypic diversity. A possible explanation is that phenotypic differences between cells might reflect the local exchange of instructive signals. If so, then the genes for the three phenotypic markers are controlled independently.  相似文献   

2.
The process of vegetative propagation used to multiply grapevine varieties produces, in most cases, clones genetically identical to the parental plant. Nevertheless, spontaneous somatic mutations can occur in the regenerative cells that give rise to the clones, leading to consider varieties as populations of clones that conform to a panel of phenotypic traits. Using two sets of nuclear microsatellite markers, the present work aimed at evaluating and comparing the intravarietal genetic diversity within seven wine grape varieties: Cabernet franc, Cabernet Sauvignon, Chenin blanc, Grolleau, Pinot noir, Riesling, Savagnin, comprising a total number of 344 accessions of certified clones and introductions preserved in French repositories. Ten accessions resulted in being either self-progeny, possible offspring of the expected variety or misclassified varieties. Out of the 334 remaining accessions, 83 displayed genotypes different from the varietal reference, i.e., the microsatellite profile shared by the larger number of accessions. They showed a similarity value ranging from 0.923 to 0.992, and thus were considered as polymorphic monozygotic clones. The fraction of polymorphic clones ranged from 2 to 75% depending on the variety and the set of markers, the widest clonal diversity being observed within the Savagnin. Among the 83 polymorphic clones, 29 had unique genotype making them distinguishable; others were classified in 21 groups sharing the same genotype. All microsatellite markers were not equally efficient to show diversity within clone collections and a standard set of five microsatellite markers (VMC3a9, VMC5g7, VVS2, VVMD30, and VVMD 32) relevant to reveal clonal polymorphism is proposed.  相似文献   

3.
4.
5.
Macrophage hybridoma clones prepared by fusion of splenic adherent cells with P388D1 tumor cells have previously been shown to be heterogeneous with respect to function at the clonal level. In this study the macrophage clones were phenotypically characterized by indirect RIA using a battery of rat MAbs to murine myeloid and lymphoid cell surface markers. All macrophage clones expressed the common leukocyte antigen T200 and the Mac-1 alpha and beta chains. Markers which were differentially expressed among the clones included class II antigens and the antigens detected by MAbs MIV 55, MIV 38, and 14G8. The antigens detected by the latter three MAbs were referred to as MBR-1, -2 and -3, respectively. Functional heterogeneity did not correlate with phenotypic heterogeneity among the macrophage clones. Treatment of macrophage clones with IFN-gamma resulted in a significant increase in the expression of class II antigens and induced the expression of MBR antigens on some clones which were constitutively negative for these markers. The clonal distribution and induction patterns of class II antigen as compared to MBR antigen indicated that regulation of expression of these markers was independent. In addition, the clonal distribution and induction pattern of MBR antigens, along with competitive binding studies using radiolabeled MIV 38 and 14G8 MAbs, suggested that the three MBR antigens were similar or closely associated molecules.  相似文献   

6.
Xenopus embryos injected with tritiated thymidine throughout the stages of embryonic retinal neurogenesis showed that more than 95% of the embryonic retinal cells are born within a 25 hr period. While there are shallow central to peripheral, dorsal to ventral, and interlaminar gradients of neurogenesis in these eyes, throughout most of this 25 hr period, postmitotic cells are being added to all sectors and layers. Small clones of differentiated retinal neurons and glia derived from single neuroepithelial cells injected with HRP. These clones were elongated radially. They were also composed of many different combinations of cell types, suggesting a mechanism whereby determination is arbitrarily and independently assigned to postmitotic cells. Such a model, when tested statistically, fits our data very well. We present a scheme for cellular determination in the Xenopus retina in which a coherent group of clonally related cells stretch out radially as lamination begins. This brings different cells into different microenvironments. Local interactions in these microenvironments then lead the cells toward specific fates.  相似文献   

7.
Yang BC  Lee SH  Hwang S  Lee HC  Im GS  Kim DH  Lee DK  Lee KT  Jeon IS  Oh SJ  Park SB 《BMB reports》2012,45(1):38-43
We investigated phenotypic differences in Hanwoo cattle cloned from somatic cells of a single adult. Ten genetically identical Hanwoo were generated by somatic cell nuclear transfer from a single adult. Weights at birth, growing pattern, horn and noseprint patterns were characterized to investigate phenotypic differences. The weights of clones at 6 and 12 months were slightly heavier than that of the donor. A horn pattern analysis revealed that seven clones had exactly the same horn pattern as the donor cow, whereas three were different. Although similarities such as general appearance can often be used to identify individual cloned animals, no study has characterized noseprint patterns for this end. A noseprint pattern analysis of all surviving clones showed that all eight animals had distinct noseprints. Four were similar to the donor, and the remaining four had more secondary-like characteristics.  相似文献   

8.
Many previous studies have provided evidence for genome changes in polyploids, but there are little data on the overall population dynamics of genome change and whether it causes phenotypic variability. We analyzed genetic, epigenetic, gene expression, and phenotypic changes in approximately 50 resynthesized Brassica napus lines independently derived by hybridizing double haploids of Brassica oleracea and Brassica rapa. A previous analysis of the first generation (S0) found that genetic changes were rare, and cytosine methylation changes were frequent. Our analysis of a later generation found that most S0 methylation changes remained fixed in their S5 progeny, although there were some reversions and new methylation changes. Genetic changes were much more frequent in the S5 generation, occurring in every line with lines normally distributed for number of changes. Genetic changes were detected on 36 of the 38 chromosomes of the S5 allopolyploids and were not random across the genome. DNA fragment losses within lines often occurred at linked marker loci, and most fragment losses co-occurred with intensification of signal from homoeologous markers, indicating that the changes were due to homoeologous nonreciprocal transpositions (HNRTs). HNRTs between chromosomes A1 and C1 initiated in early generations, occurred in successive generations, and segregated, consistent with a recombination mechanism. HNRTs and deletions were correlated with qualitative changes in the expression of specific homoeologous genes and anonymous cDNA amplified fragment length polymorphisms and with phenotypic variation among S5 polyploids. Our data indicate that exchanges among homoeologous chromosomes are a major mechanism creating novel allele combinations and phenotypic variation in newly formed B. napus polyploids.  相似文献   

9.
Tuber yield, starch content, starch yield and chip color are complex traits that are important for industrial uses and food processing of potato. Chip color depends on the quantity of reducing sugars glucose and fructose in the tubers, which are generated by starch degradation. Reducing sugars accumulate when tubers are stored at low temperatures. Early and efficient selection of cultivars with superior yield, starch yield and chip color is hampered by the fact that reliable phenotypic selection requires multiple year and location trials. Application of DNA-based markers early in the breeding cycle, which are diagnostic for superior alleles of genes that control natural variation of tuber quality, will reduce the number of clones to be evaluated in field trials. Association mapping using genes functional in carbohydrate metabolism as markers has discovered alleles of invertases and starch phosphorylases that are associated with tuber quality traits. Here, we report on new DNA variants at loci encoding ADP-glucose pyrophosphorylase and the invertase Pain-1, which are associated with positive or negative effect with chip color, tuber starch content and starch yield. Marker-assisted selection (MAS) and marker validation were performed in tetraploid breeding populations, using various combinations of 11 allele-specific markers associated with tuber quality traits. To facilitate MAS, user-friendly PCR assays were developed for specific candidate gene alleles. In a multi-parental population of advanced breeding clones, genotypes were selected for having different combinations of five positive and the corresponding negative marker alleles. Genotypes combining five positive marker alleles performed on average better than genotypes with four negative alleles and one positive allele. When tested individually, seven of eight markers showed an effect on at least one quality trait. The direction of effect was as expected. Combinations of two to three marker alleles were identified that significantly improved average chip quality after cold storage and tuber starch content. In F1 progeny of a single-cross combination, MAS with six markers did not give the expected result. Reasons and implications for MAS in potato are discussed.  相似文献   

10.
The Frozen Niche-Variation hypothesis (FNV) suggests that clones randomly sample and “freeze” the genotypes of their ancestral sexual populations. Hence, each clone expresses only a fraction of the total niche-use variation observed in the sexual population, which may lead to selection for ecological specialization and coexistence of clones. A generalized form of the FNV model suggests that the same is true for life-history (as well as other) traits that have important fitness consequences, but do not relate directly to niche use. We refer to the general form of the model as the Frozen Phenotypic Variation (FPV) model. A mixed population of sexual and parthenogenetic snails (Potamopyrgus antipodarum) in a New Zealand lake allowed us to examine the phenotypic variation expressed by coexisting clones in two benthic habitats, and to compare that variation to the sexual population. Three clones were found primarily in an aquatic macrophyte zone composed of Isoetes kirkii (1.5–3.0 m deep), and three additional clones were found in a deeper macrophyte zone composed of Elodea canadensis (4.0–6.0 m deep). These clones showed significant variation between habitats, which mirrored that observed in the sexual population. Specifically, clones and sexuals from the deeper habitat matured at a larger size and had larger broods. There was also significant among-clone variation within habitats; and as expected under the FPV model, the within-clone coefficients of variation for size at maturity were low in both habitats when compared to the sexual population. In addition, we found four clones that were common in both macrophyte zones. The reaction norms of these clones were flat across habitats, suggesting little phenotypic plasticity for morphology or life-history traits. Flat reaction norms, high among-clone variation, and low coefficients of variation (relative to the sexual population) are in accordance with the FPV model for the origin of clonal lineages. We also measured the prevalence of infection by trematode larvae to determine whether clones are inherently more or less infectable, or whether they are freezing phenotypic variation for resistance from the sexual population. We did this in the deep habitats of the lake where recycling of the parasite by the vertebrate host is unlikely, thereby reducing the complications raised by frequency-dependent responses of parasites to host genotypes. We found no indication that clones are either more or less infectable than the resident sexual population. Taken together, our results suggest that phenotypic variation for both life-history traits and resistance to parasites is frozen by clones from the local sexual population.  相似文献   

11.
Fifteen populations of wild bean (Phaseolus vulgaris), located in three provinces in Argentina, were analysed for their polymorphism for a complex resistance gene candidate (RGC) family clustered on the genome and for resistance phenotypes to strains of Colletotrichum lindemuthianum. Results indicate that RGC polymorphism is high. Population structure obtained for markers related to resistance was compared to population structure obtained for RAPD markers in order to infer the evolutionary forces driving polymorphism for resistance in wild populations at both molecular and phenotypic levels. Hierarchical analysis of differentiation showed that, within provinces, populations were differentiated for RAPD as well as for molecular and phenotypic markers of resistance. In contrast, provinces were differentiated only for RAPD and RGC markers and not for resistance phenotypes. The discrepancies found between diversity structures for molecular markers (RAPD and RGCs) and for resistance phenotypes suggest an effect of selection and indicate that diversity for resistance may not be driven by the same selective forces at the molecular and phenotypic levels. We further discuss whether specific selective forces are exerted on RGC markers and underline the importance of spatial scale of analysis for demonstrating an impact of selection.  相似文献   

12.
13.
The V3 region of the human immunodeficiency virus type 1 (HIV-1) envelope protein is known to have a major influence on macrophage tropism as well as the ability to cause syncytium formation or fusion in CD4-positive lymphocyte cultures. Using infectious molecular HIV-1 clones, a series of mutant clones was created which allowed detailed mapping of V3 amino acid positions involved in these properties. In these experiments the non-syncytium-inducing phenotype in T cells did not always correlate with macrophage tropism. Macrophage tropism appeared to depend on the presence of certain combinations of amino acids at five specific positions within and just outside of the V3 loop itself, whereas syncytium formation in lymphocytes was influenced by substitution of particular residues at two to four positions within V3. In most cases, different V3 amino acid positions were found to independently influence macrophage tropism and syncytium formation in T cells and position 13 was the only V3 location which appeared to simultaneously influence both macrophage tropism and syncytium formation in lymphocytes.  相似文献   

14.
Selective genotyping of extreme progeny is a powerful method to increase the information content per individual when looking for quantitative trait loci (QTLs) using molecular markers for which a map is known. However, if marker information from the selected individuals is used to construct the map of the markers, this can lead to distorted segregation of the markers that in turn can lead to the estimation of a spurious linkage between independently inherited markers. The mistaken estimation of linkage between independently inherited markers will occur when there are two (or more) independently inherited QTLs linked to two (or more) markers and the same individuals are used to estimate the map of the markers and to do the QTL estimation. The incorrect linkage occurs because in selecting individuals from the tails of the phenotypic distribution we will also be selecting certain combinations of the markers instead of obtaining a random sample of the true distribution of the marker genotypes. Analytical results are outlined and the analyses of a simulated data set illustrate the problems that could arise when data from individuals chosen by selective genotyping are incorrectly employed to construct a marker map. A strategy is proposed to remedy this problem.  相似文献   

15.
Granular lymphocytes co-expressing the Leu-7 (NK-related) and CD4 (T helper cell) markers are selectively localized in the germinal centers of lymphoid tissues. Leu-7+ cells (greater than 98% of which co-expressed CD4) were isolated from inflammatory tonsils and were cloned by the limiting dilution technique. Clones were analyzed for their phenotypic and functional characteristics. CD4+-Leu-7+ cell-derived clones retained their CD3 and CD4 surface antigens, lost the Leu-7 marker, and acquired HLA-DR determinants. In comparison with clones derived from peripheral blood or tonsil CD4+ cells, CD4+-Leu-7+ tonsil cell-derived clones showed similar low frequencies of cytotoxic precursors. In contrast, the frequency of interleukin 2 (IL 2) and B cell growth factor producing clones was much lower for tonsil CD4+-Leu-7+ cells than for CD4+ blood or tonsil progenitors. We conclude that germinal center CD4+-Leu-7+ cells are a subset of T cells unable to produce IL 2 in response to phytohemagglutinin or anti-CD3 stimulation, which is effective on the majority of T helper cells.  相似文献   

16.
The degree of phenotypic variation of the bacterial strains USDA 125-Sp, USDA 138 and USDA 138-SmBradyrhizobium japonicum a long time after introduction was studied in three experimental fields. A total of 54 phenotypic characters were analyzed by constructing a dendrogram based on an hierarchic classification. Strong similarities (92.6, 94 and 95%) were found between the isolates introduced into soil 8, 10 and 13 years ago and between their respectiveB. japonicum parental clones. The dendrogrammic analysis detected a small amount of phenotypic drift, however, between soil isolates and parental clones belonging to the same serogroup (selective effects were found to have generated 0 to 3.9% variation for the USDA 125-Sp inoculum introduced 8 years ago, and 3.2–3.5% after 10 and 13 years, respectively, for the USDA 138 and USDA 138-Sm bacterial inocula) and within the serogroup 125 soil isolates (2.7%). We found a similar evolution of serogroup 125 isolates when compared with parental clones conserved on slant agar at 4°C. When a drift was observed, the isolates from soil presented a lower activity for several enzymes and lower diversity compared with the parental clones.  相似文献   

17.
Bone marrow mesenchymal stromal cells (BM MSCs) represent a heterogeneous population of progenitors with potential for generation of skeletal tissues. However the identity of BM MSC subpopulations is poorly defined mainly due to the absence of specific markers allowing in situ localization of those cells and isolation of pure cell types. Here, we aimed at characterization of surface markers in mouse BM MSCs and in their subsets with distinct differentiation potential. Using conditionally immortalized BM MSCs we performed a screening with 176 antibodies and high-throughput flow cytometry, and found 33 markers expressed in MSCs, and among them 3 were novel for MSCs and 13 have not been reported for MSCs from mice. Furthermore, we obtained clonally derived MSC subpopulations and identified bipotential progenitors capable for osteo- and adipogenic differentiation, as well as monopotential osteogenic and adipogenic clones, and thus confirmed heterogeneity of MSCs. We found that expression of CD200 was characteristic for the clones with osteogenic potential, whereas SSEA4 marked adipogenic progenitors lacking osteogenic capacity, and CD140a was expressed in adipogenic cells independently of their efficiency for osteogenesis. We confirmed our observations in cell sorting experiments and further investigated the expression of those markers during the course of differentiation. Thus, our findings provide to our knowledge the most comprehensive characterization of surface antigens expression in mouse BM MSCs to date, and suggest CD200, SSEA4 and CD140a as markers differentially expressed in distinct types of MSC progenitors.  相似文献   

18.
Comparing the patterns of population divergence using both neutral genetic and phenotypic traits provides an opportunity to examine the relative importance of evolutionary mechanisms in shaping population differences. We used microsatellite markers to examine population genetic structure in the Mexican sailfin mollies Poecilia velifera and P. petenensis. We compared patterns of genetic structure and divergence to that in two types of phenotypic traits: morphological characters and mating behaviours. Populations within each species were genetically distinct, and conformed to a model of isolation by distance, with populations within different geographical regions being more genetically similar to one another than were populations from different regions. Bayesian clustering and barrier analyses provided additional support for population separation, especially between geographical regions. In contrast, none of the phenotypic traits showed any type of geographical pattern, and population divergence in these traits was uncorrelated with that found in neutral markers. There was also a weaker pattern of regional differences among geographical regions compared to neutral genetic divergence. These results suggest that while divergence in neutral traits is likely a product of population history and genetic drift, phenotypic divergence is governed by different mechanisms, such as natural and sexual selection, and arises at spatial scales independent from those of neutral markers.  相似文献   

19.
We have determined the sequence coding for human alpha 1-acid glycoprotein from two independently isolated cDNA clones and a genomic clone. The aminoacid sequences deduced from the three clones, deriving from three different individuals, are identical. Southern blot analysis on human DNA indicates that there are at least two genes coding for alpha 1-AGP. We propose that alpha 1-AGP found in plasma is a mixture of the products of these two different genes. This is the simpler explanation for the heterogeneity in the aminoacid composition in purified alpha 1-AGP observed by Schmid et al. (1). DNA sequence comparison with cDNA clones coding for human alpha 1-antitrypsin and haptoglobin shows a conserved sequence within the 5' untranslated region which may play a role in the acute phase response.  相似文献   

20.
Multiple clonal isolates from a geographic population of Alexandrium tamarense (M. Lebour) Balech from the North Sea exhibited high genotypic and phenotypic variation. Genetic heterogeneity was such that no clonal lineage was repeatedly sampled according to genotypic markers specified by amplified fragment length polymorphism (AFLP) and microsatellites. Subsampling of genotypic data from both markers showed that ordination of individuals by pair‐wise genetic dissimilarity indices was more reliable by AFLP (482 biallelic loci) than by microsatellites (18 loci). However, resulting patterns of pair‐wise genetic similarities from both markers were significantly correlated (Mantel test P < 0.005). The composition of neurotoxins associated with paralytic shellfish poisoning (PSP) was also highly diverse among these isolates and allowed clustering of toxin phenotypes based on prevalence of individual toxins. Correlation analysis of pair‐wise relatedness of individual clones according to PSP‐toxin profiles and both genotypic characters failed to yield close associations. The expression of allelochemical properties against the cryptophyte Rhodomonas salina (Wis?ouch) D. R. A. Hill et Wetherbee and the predatory dinoflagellate Oxyrrhis marina Dujard. manifested population‐wide variation of responses in the target species, from no visible effect to complete lysis of target cells. Whereas the high genotypic variation indicates high potential for adaptability of the population, we interpret the wide phenotypic variation as evidence for lack of strong selective pressure on respective phenotypic traits at the time the population was sampled. Population markers as applied here may elucidate the ecological significance of respective traits when followed under variable environmental conditions, thereby revealing how variation is maintained within populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号