首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Goal, Scope and Background

Brazil is the world's biggest producer of coffee beans with approx. a 30% market share. Depending on climate conditions, approx. 30 million bags of coffee beans are exported annually from Brazil, while domestic consumption is around 10 million bags, which makes Brazil the world's third largest coffee-consuming country. Therefore, the goal of this paper is to present the LCA of green coffee produced in Brazil for the reference crops 2001/02 and 2002/03 in order to generate detailed production inventory data as well as to identify the potential environmental impacts of its tillage in order to realize how to reduce those impacts and increase the environmental sustainability of this product. Only the inputs and outputs relative to the coffee tillage were considered. The production of fertilizers, correctives and pesticides were not included in the boundary, but only their amounts. The functional unit selected for this study was 1,000 kg of green coffee destined for exportation.

Methods

The LCI was performed according to the ISO 14040 standard series. All information considered in this study (use of water, fossil based energy, fertilizers and chemicals) were taken up in in-depth data collection and evaluation by questionnaires applied on a farm level and/or received by mail. Four Brazilian coffee producer regions were evaluated: Cerrado Mineiro, South of Minas Gerais State, the Marília and Alta Mogiana regions in São Paulo State. These regions have the following geographic coordinates: 44 to 50° W longitude and 18 to 24° S latitude. The data refer to a production of 420,000 coffee bean bags and a productive area of approx. 14,300 ha. The varieties of coffee beans considered in this study were Mundo Novo, Catuaí (yellow and red), Icatu (yellow and red), Catucaí (yellow and red) and Obatã. Farm specific data along with agricultural production data have been combined to elaborate a coffee cultivation inventory, which will be applied in an emissions estimation.

Results and Conclusion

The production of 1,000 kg of green coffee in Brazil requires approx. 11,400 kg of water, 94 kg of diesel, 270 kg of fertilizers as NPK, 900 kg of total fertilizers, 620 kg of correctives, 10 kg of pesticides and 0.05 hectare of annual land use. Outputs related to these functional units are approx. 3,000 kg of waste water from coffee washing, 8,500 kg of waste water from the wet method and 750 kg of organic residue that is reincorporated to the tillage as fertilizer. The publication of an LCI of agricultural products is a fundamental step for understanding the potential environmental impacts of each tillage and then establishes the basis for product sustainability. In this way, this work is the first Brazilian initiative for applying LCA to coffee cultivation.

Recommendation and Perspective

Different agricultural practices demonstrate different environmental profiles. The amount of agricultural pesticide is directly related to agricultural practices as tillage rotation, density of plants, etc. This study supplied important results for a better correlation of the agricultural practices and potential environmental impacts of coffee. Future updates of this study will show the evolution of the natural resource management such as land use, new agricultural practices, lower fertilizers and chemicals use.  相似文献   

2.

Purpose

To consider whether feed supplements that reduce methane emissions from dairy cows result in a net reduction in greenhouse gas (GHG) intensity when productivity changes and emissions associated with extra manufacturing and management are included.

Methods

A life cycle assessment was undertaken using a model farm based on dairy farms in Victoria, Australia. The system boundary included the creation of farm inputs and on-farm activities up to the farm gate where the functional unit was 1 L of fat and protein corrected milk (FPCM). Electricity and diesel (scaled per cow), and fertiliser inputs (scaled on farm size) to the model farm were based on average data from a survey of farms. Fertiliser applied to crops was calculated per area of crop. Animal characteristics were based on available data from farms and literature. Three methane-reducing diets (containing brewers grain, hominy or whole cotton seed) and a control diet (cereal grain) were modelled as being fed during summer, with the control diet being fed for the remainder of the year in all cases.

Results and discussion

Greenhouse gas intensity (kg CO2-eq/L FPCM) was lower than the control diet when the hominy (97 % compared with control) and brewers grain (98 %) diets were used but increased when the whole cottonseed diet was used (104 %). On-farm GHG emissions (kg CO2-eq) were lower than the control diet when any of the methane-reducing diets were used (98 to 99.5 % of emissions when control diet fed). Diesel use in production and transport of feed supplements accounted for a large portion (63 to 93 %) of their GHG intensity (kg CO2-eq/t dry matter). Adjusting fertiliser application, changing transport method, changing transport fuel, and using nitrification inhibitors all had little effect on GHG emissions or GHG intensity.

Conclusions

Although feeding strategies that reduce methane emissions from dairy cows can lower the GHG emissions up to the farm gate, they may not result in lower GHG intensities (g CO2-eq/L FPCM) when pre-farm emissions are included. Both transport distance and the effect of the feed on milk production have important impacts on the outcomes.  相似文献   

3.

Purpose

The wood panel industry is one of the most important forest-based industries in Brazil. The medium density particleboard (MDP) is currently produced and consumed worldwide and represents about 50 % of the wood panel industry in Brazil. Unlike other regions, Brazilian MDP is produced from dedicated eucalyptus plantations and heavy fuel oil is an important energy source in MDP manufacture, which may result in a different environmental profile. This paper presents a life cycle assessment of MDP panel produced in Brazil and suggests improvement opportunities by assessing alternative production scenarios.

Methods

The cradle-to-gate assessment of 1 m3 of MDP produced in Brazil considered two main subsystems: forest and industrial production. Detailed inventories for Brazilian eucalyptus production and MDP industrial production were collected as a result of technical visits to Brazilian MDP producers (foreground systems) as well as literature review (mainly background systems). The potential environmental impacts of MDP were assessed in terms of seven impact categories using CML (abiotic depletion, acidification, global warming, eutrophication, and photochemical oxidation) and USEtox (ecotoxicity and human toxicity) impact assessment methods in order to identify the main hotspots.

Results and discussion

The industrial production was responsible for most of the impacts in all impact categories, except ecotoxicity (EC). The main hotspots identified were the use of heavy fuel oil (HFO) as a thermal energy source in MDP manufacture and the production of urea–formaldehyde (UF) resin used as synthetic adhesive. Glyphosate herbicide application in soil in forestry operations was the main responsible for the impacts in EC. Scenarios for HFO substitution were assessed and results showed that substituting HFO for in-mill wood residues or diesel leads to reduced environmental impacts.

Conclusions

The identification of the main hotspots in the MDP life cycle can assist the wood panel industry to improve their environmental profile. Further research should focus on UF resin production in order to reduce its environmental impacts as well as the possibility of using alternatives resins. Other sources of wood for MDP production could also be investigated (e.g., pine wood and wood residues) to assess potential improvements.  相似文献   

4.

Purpose

The aim of this study is to identify and evaluate the main environmental impacts related to semi-intensive beef cattle production system in the State of Bahia, in Brazil’s Northeast.

Methods

A cradle to gate study was undertaken in a beef cattle production system comprising two stages: calves production in one farm (farm 1) and cattle production in another farm (farm 2), both located in the central-southern meso-region of Bahia. The functional unit was 1?kg live weight. Impact assessment was performed using five impact categories from the ReCiPe method.

Results and discussion

When compared to calves, the cattle production had the greatest contributions in all of the five studied impact categories. The process pasture cultivation had expressive environmental impacts in all categories, with 70.05 % for climate change (CC), 82.01 % for terrestrial acidification (TA), 76.53 % for fossil depletion (FD), 86.14 % for freshwater eutrophication (FE) and 100 % for agricultural land occupation (ALO). In CC and TA, the principal elementary flow was the direct emissions due to the use of mineral fertilizers. In FE and FD, the dominant flow was related to the use of phosphate fertilizer. In ALO, the process pasture cultivation was predominant due to the physical area of the farms, which is a characteristic of pasture-based production systems. The processes breeding-rearing and fattening were second in the contribution analysis, with 29.95 % and 17.99 %, respectively, for CC and TA, due to the enteric methane (CH4) and the direct emissions of nitrous oxide (N2O) volatilization from the animal excreta.

Conclusions

The cattle production is responsible for the greater part of impacts, compared to the calves production. The direct emissions from fertilizers used in the pastures, from enteric emissions and from animal wastes in the breeding-rearing and fattening processes were identified as the critical points of the analysed cattle production system. Measures aiming at the improvement of the feed conversion of the animals and at the substitution of synthetic nitrogen fertilizers by natural nitrogen fixation can considerably contribute to the reduction of environmental impacts of these production systems. Accordingly, the respective modifications should be considered in future studies on the potential of these measures to enhance the environmental performance of semi-intensive beef cattle production. These results will complement other similar studies conducted in other regions of the country, following the tendency of growing usage of the life cycle assessment methodology in Brazilian agricultural and livestock systems.
  相似文献   

5.

Purpose

This study quantifies freshwater consumption throughout the life cycle of Brazilian exported yellow melons and assesses the resulting impact on freshwater availability. Results are used to identify improvement options. Moreover, the study explores the further impact of variations in irrigation volume, yield, and production location.

Methods

The product system boundary encompasses production of seeds, seedlings, and melon plants; melon packing; disposal of solid farm waste; and farm input and melon transportation to European ports. The primary data in the study were collected from farmers in order to quantify freshwater consumption related to packing and to production of seeds, seedlings, and melons. Open-field melon irrigation was also estimated, considering the region's climate and soil characteristics. Estimated and current water consumptions were compared in order to identify impact reduction opportunities. Sensitivity analysis was used to evaluate variations in the impact because of changes in melon field irrigation, yield, and farm location.

Results and discussion

This study shows that the average impact on freshwater availability of 1 kg of exported Brazilian yellow melons is 135 l H2O-e, with a range from 17 to 224 l H2O-e depending on the growing season's production period. Irrigation during plant production accounts for 98 % of this impact. Current melon field water consumption in the Low Jaguaribe and Açu region is at least 39 % higher than necessary, which affects the quality of fruits and yield. The impact of melon production in other world regions on freshwater availability may range from 0.3 l H2O-e/kg in Costa Rica to 466 l H2O-e/kg in the USA.

Conclusions

The impact of temporary crops, such as melons, on water availability should be presented in ranges, instead of as an average, since regional consumptive water and water stress variations occur in different growing season periods. Current and estimated water consumption for irrigation may also be compared in order to identify opportunities to achieve optimization and reduce water availability impact.  相似文献   

6.

Purpose

Sugarcane bagasse is one of the main agro-industrial residues which can be used to produce wood-based panels. However, more investigations related to its environmental performance assessment are needed, focusing on questions such as: Does it provide environmental benefits? What are its main environmental impacts? Could it substitute wood as raw material? Accordingly, this paper presents a life cycle assessment (LCA) study of particle board manufactured with sugarcane bagasse residues.

Methods

The cradle-to-gate assessment of 1 m3 of particle board made with sugarcane bagasse (PSB) considered three main subsystems: bagasse generation, bagasse distribution, and PSB production. For the inventory of PSB, dataset from two previous LCA studies related to the conventional particle board production and the ethanol life cycle for the Brazilian context were used. The allocation criterion for the bagasse generation subsystem was 9.08 % (economic base). The potential environmental impact phase was assessed by applying the CML and USEtox methods. PSB was compared with the conventional particle board manufactured in Brazil by the categories of the CML and USETox, and including land use indicators. Finally, two scenarios were analyzed to evaluate the influence of the allocation criteria and the consumption of sugarcane bagasse.

Results and discussion

All hotspots identified by CML and USETox methods are mainly related to the PSB production subsystem (24–100 % of impacts) due to heavy fuel oil, electricity, and urea-formaldehyde resin supply chain. The bagasse generation subsystem was more relevant to the eutrophication category (75 % of impacts). The bagasse distribution subsystem was not relevant because the impacts on all categories were lower than 1 %. PSB can substitute the conventional particle board mainly because of its lower contribution to abiotic depletion and ecotoxicity. Regarding land use impacts, PSB showed lower values according to all indicators (38–40 % of all impacts), which is explained by the lower demand for land occupation in comparison to that of the traditional particle board.

Conclusions

PSB can replace the traditional particle board due to its better environmental performance. The analysis of the economic allocation criterion was relevant only for the EP category, being important to reduce diesel and N-based fertilizers use during sugarcane cultivation. Regarding the influence of the sugarcane bagasse consumption, it is suggested that the sugarcane bagasse be mixed up to 75 % during particle board manufacturing so that good quality properties and environmental performance of panels can be provided.  相似文献   

7.

Purpose

The production of bioethanol in Argentina is based on the sugarcane plantation system, with extensive use of agricultural land, scarce use of fertilizers, pesticides, and artificial irrigation, and burning of sugarcane prior to harvesting. The objective of this paper is to develop a life cycle assessment (LCA) of the fuel ethanol from sugarcane in Tucumán (Argentina), assessing the environmental impact potentials to identify which of them cause the main impacts.

Methods

Our approach innovatively combined knowledge about the main impact pathways of bioethanol production with LCA which covers the typical emission-related impact categories at the midpoint life cycle impact assessment. Real data from the Argentinean industry subsystems have been used to perform the study: S1—sugarcane production, S2—milling process, S3—sugar production, and S4—ethanol production from molasses, honey, or sugarcane juice.

Results and discussion

The results are shown in the three alternative pathways to produce bioethanol. Different impact categories are assessed, with global warming potential (GWP) having the highest impact. So, the production of 1 kg of ethanol from molasses emitted 22.5 kg CO2 (pathway 1), 19.2 kg CO2 from honey (pathway 2), and 15.0 kg CO2 from sugarcane juice (pathway 3). Several sensitivity analyses to study the variability of the GWP according to the different cases studied have been performed (changing the agricultural yield, including economic and calorific allocation in sugar production, and modifying the sugar price).

Conclusions

Agriculture is the subsystem which shows the highest impact in almost all the categories due to fossil fuel consumption. When an economic and calorific allocation is considered to assess the environmental impact, the value is lower than when mass allocation is used because ethanol is relatively cheaper than sugars and it has higher calorific value.  相似文献   

8.

Background and aims

Long-term use of copper (Cu) based fungicides has accelerated Cu contamination in soils and subsequently its export to the environment. Field trials were conducted in representative commercial citrus groves in the Indian River area, South Florida to evaluate the effectiveness of calcium water treatment residue (Ca-WTR) for stabilizing Cu in soil and its subsequent influence on Cu loading in surface runoff and citrus growth.

Methods

Soil and surface runoff samples were monitored over a 3-year period on two field sites under navel orange and Ruby Red grapefruit production.

Results

Soil amendment with Ca-WTR generally raised soil pH and soil available Ca, but decreased available Cu. The mean concentrations of Cu in surface runoff water were reduced by 36 % and 28 % for the navel orange and grapefruit site, respectively. The results of species distribution of Cu in the runoff water using MINTEQ indicated that the application of Ca-WTR decreased the concentrations of free Cu2+ by 61 % and 39 % for the two sites. Fruit quality and yields were improved, because of the improved nutrient availability and other soil conditions.

Conclusions

The results indicate that in situ application of Ca-WTR may provide a cost-effective remediation method for the Cu-contaminated soils without affecting citrus production.  相似文献   

9.

Purpose

Life cycle assessment (LCA) studies of carbon footprint (CF) of milk from grass-based farms are usually limited to small numbers of farms (<30) and rarely certified to international standards, e.g. British Standards Institute publicly available specification 2050 (PAS 2050). The goals of this study were to quantify CF of milk from a large sample of grass-based farms using an accredited PAS 2050 method and to assess the relationships between farm characteristics and CF of milk.

Materials and methods

Data was collected annually using on-farm surveys, milk processor records and national livestock databases for 171 grass-based Irish dairy farms with information successfully obtained electronically from 124 farms and fed into a cradle to farm-gate LCA model. Greenhouse gas (GHG) emissions were estimated with the LCA model in CO2 equivalents (CO2-eq) and allocated economically between dairy farm products, except exported crops. Carbon footprint of milk was estimated by expressing GHG emissions attributed to milk per kilogram of fat and protein-corrected milk (FPCM). The Carbon Trust tested the LCA model for non-conformities with PAS 2050. PAS 2050 certification was achieved when non-conformities were fixed or where the effect of all unresolved non-conformities on CF of milk was?<?±5 %.

Results and discussion

The combined effect of LCA model non-conformities with PAS 2050 on CF of milk was <1 %. Consequently, PAS 2050 accreditation was granted. The mean certified CF of milk from grass-based farms was 1.11 kg of CO2-eq/kg of FPCM, but varied from 0.87 to 1.72 kg of CO2-eq/kg of FPCM. Although some farm attributes had stronger relationships with CF of milk than the others, no attribute accounted for the majority of variation between farms. However, CF of milk could be reasonably predicted using N efficiency, the length of the grazing season, milk yield/cow and annual replacement rate (R 2?=?0.75). Management changes can be applied simultaneously to improve each of these traits. Thus, grass-based farmers can potentially significantly reduce CF of milk.

Conclusions

The certification of an LCA model to PAS 2050 standards for grass-based dairy farms provides a verifiable approach to quantify CF of milk at a farm or national level. The application of the certified model highlighted a wide range between the CF of milk of commercial farms. However, differences between farms’ CF of milk were explained by variation in various aspects of farm performance. This implies that improving farm efficiency can mitigate CF of milk.  相似文献   

10.

Purpose

Bio-based products are often considered sustainable due to their renewable nature. However, the environmental performance of products needs to be assessed considering a life cycle perspective to get a complete picture of potential benefits and trade-offs. We present a life cycle assessment of the global commodity ethanol, produced from different feedstock and geographical origin. The aim is to understand the main drivers for environmental impacts in the production of bio-based ethanol as well as its relative performance compared to a fossil-based alternative.

Methods

Ethanol production is assessed from cradle to gate; furthermore, end-of-life emissions are also included in order to allow a full comparison of greenhouse gas (GHG) emissions, assuming degradation of ethanol once emitted to air from household and personal care products. The functional unit is 1 kg ethanol, produced from maize grain in USA, maize stover in USA, sugarcane in North-East of Brazil and Centre-South of Brazil, and sugar beet and wheat in France. As a reference, ethanol produced from fossil ethylene in Western Europe is used. Six impact categories from the ReCiPe assessment method are considered, along with seven novel impact categories on biodiversity and ecosystem services (BES).

Results and discussion

GHG emissions per kilogram bio-based ethanol range from 0.7 to 1.5 kg CO2 eq per kg ethanol and from 1.3 to 2 kg per kg if emissions at end-of-life are included. Fossil-based ethanol involves GHG emissions of 1.3 kg CO2 eq per kg from cradle-to-gate and 3.7 kg CO2 eq per kg if end-of-life is included. Maize stover in USA and sugar beet in France have the lowest impact from a GHG perspective, although when other impact categories are considered trade-offs are encountered. BES impact indicators show a clear preference for fossil-based ethanol. The sensitivity analyses showed how certain methodological choices (allocation rules, land use change accounting, land use biomes), as well as some scenario choices (sugarcane harvest method, maize drying) affect the environmental performance of bio-based ethanol. Also, the uncertainty assessment showed that results for the bio-based alternatives often overlap, making it difficult to tell whether they are significantly different.

Conclusions

Bio-based ethanol appears as a preferable option from a GHG perspective, but when other impacts are considered, especially those related to land use, fossil-based ethanol is preferable. A key methodological aspect that remains to be harmonised is the quantification of land use change, which has an outstanding influence in the results, especially on GHG emissions.  相似文献   

11.

Purpose

The purpose of this study was to quantify the spatial and technological variability in life cycle greenhouse gas (GHG) emissions, also called the carbon footprint, of durum wheat production in Iran.

Methods

The calculations were based on information gathered from 90 farms, each with an area ranging from 1 to 150 ha (average 16 ha). The carbon footprint of durum wheat was calculated by quantifying the biogenic GHG emissions of carbon loss from soil and biomass, as well as the GHG emissions from fertilizer application and machinery use, irrigation, transportation, and production of inputs (e.g., fertilizers, seeds, and pesticides). We used Spearman’s rank correlation to quantify the relative influence of technological variability (in crop yields, fossil GHG emissions, and N2O emissions from fertilizer application) and spatial variability (in biogenic GHG emissions) on the variation of the carbon footprint of durum wheat.

Results and discussion

The average carbon footprint of 1 kg of durum wheat produced was 1.6 kg CO2-equivalents with a minimum of 0.8 kg and a maximum of 3.0 kg CO2-equivalents. The correlation analysis showed that variation in crop yield and fertilizer application, representing technological variability, accounted for the majority of the variation in the carbon footprint, respectively 76 and 21%. Spatial variation in biogenic GHG emissions, mainly resulting from differences in natural soil carbon stocks, accounted for 3% of the variation in the carbon footprint. We also observed a non-linear relationship between the carbon footprint and the yield of durum wheat that featured a scaling factor of ?2/3. This indicates that the carbon footprint of durum wheat production (in kg CO2-eq kg?1) typically decreases by 67% with a 100% increase in yield (in kg ha?1 year?1).

Conclusions

Various sources of variability, including variation between locations and technologies, can influence the results of life cycle assessments. We demonstrated that technological variability exerts a relatively large influence on the carbon footprint of durum wheat produced in Iran with respect to spatial variability. To increase the durum wheat yield at farms with relatively large carbon footprints, technologies such as site-specific nutrient application, combined tillage, and mechanized irrigation techniques should be promoted.
  相似文献   

12.

Purpose

Granite is a traditional high-quality material that is widely used in construction. A key strategy that is increasingly promoted to highlight the competitiveness of materials is life cycle environmental performance. Due to the lack of comprehensive life cycle inventories (LCIs), the environmental characterisation of granite products has received little attention in scientific literature. In this paper, a complete LCI of the production chain of intermediate and finished granite products is provided and analysed.

Methods

The Spanish granite production industry, which is the second major European producer and the seventh worldwide, is examined. The reference unit is defined as 1 m2 of finished granite tiles with dimensions 60?×?40?×?2 cm used for indoor and outdoor applications. Input and output data were collected through the distribution of technical data collection surveys to quarries and processing facilities and via on-site visits. During data calculation and validation, technical support was provided by technicians from the Spanish Cluster of Granite Producers. The LCI data describe the industrial activity in baseline year 2010 that corresponds to a total production volume of 48,052 m3 of quarried granite and a net of 881,406 m2 of processed granite.

Results and discussion

The production of 1 m2 of polished granite tiles requires 28 kWh of electricity, 23 MJ of diesel, 103 l of water, and 7 kg of ancillary materials. Sandblasted, flamed or bush-hammered finishes applied to granite tiles have a minimal effect on their total energy and material requirements but significantly affect their water consumption. Electrical energy, cooling water and steel are the major industrial requirements in which granite sawing is the most demanding process. The resource efficiency of the production chain is 0.31. Approximately 117 kg of granite are wasted per square meter of granite tiles that are produced (53 kg). Seventy-four percent of granite waste is composed of granite scrap, which becomes a marketable by-product. The predominant source of granite waste is the sawdust that is generated during stone-cutting operations.

Conclusions

LCIs provide the relevant information required to characterise the environmental performance of granite production and products. LCI data can be easily managed by users due to the disaggregation into unit processes. LCI data can be used to analyse the environmental burden associated with intermediary granite products, such as granite blocks, sawn granite slabs and finished granite slabs, and to analyse the environmental burden of finished granite tiles according to the corresponding net production volumes.

Recommendations

LCI dataset of granite production should be extended to include alternative production technologies, such as diamond multiwire machines for sawing granite, which is an increasingly competitive production technology with interesting properties for cleaner production. Strong competitive granite industries, such as the industries in China, India and Brazil, should also provide LCIs of granite products to transparently compare different product chains, identify environmental strategies on the sector level, and promote the green procurement of granite products.  相似文献   

13.

Purpose

India’s biofuel programme relies on ethanol production from sugarcane molasses. However, there is limited insight on environmental impacts across the Indian ethanol production chain. This study closes this gap by assessing the environmental impacts of ethanol production from sugarcane molasses in Uttar Pradesh, India. A comparative analysis with south-central Brazilian sugarcane ethanol is also presented to compare the performance of sugarcane molasses-based ethanol with sugarcane juice-based ethanol.

Methods

The production process is assessed by a cradle-to-gate life cycle assessment. The multifunctionality problem is solved by applying two variants of system expansion and economic allocation. Environmental impacts are assessed with Impact 2002+ and results are presented at the midpoint level for greenhouse gas emissions, non-renewable energy use, freshwater eutrophication and water use. Furthermore, results include impacts on human health and ecosystem quality at the damage level. Sensitivity analysis is also performed on key contributing parameters such as pesticides, stillage treatment and irrigation water use.

Results and discussion

It is found that, compared to Brazilian ethanol, Indian ethanol causes lower or comparable greenhouse gas emissions (0.09–0.64 kgCO2eq/kgethanolIN, 0.46–0.63 kgCO2eq/kgethanolBR), non-renewable energy use (?0.3–6.3 MJ/kgethanolIN, 1–4 MJ/kgethanolBR), human health impacts (3.6?·?10?6 DALY/kgethanolIN, 4?·?10?6 DALY/kgethanolBR) and ecosystem impairment (2.5 PDF?·?m2?·?year/kgethanolIN, 3.3 PDF?·?m2?·?year/kgethanolBR). One reason is that Indian ethanol is exclusively produced from molasses, a co-product of sugar production, resulting in allocation of the environmental burden. Additionally, Indian sugar mills and distilleries produce surplus electricity for which they receive credits for displacing grid electricity of relatively high CO2 emission intensity. When economic allocation is applied, the greenhouse gas emissions for Indian and Brazilian ethanol are comparable. Non-renewable energy use is higher for Indian ethanol, primarily due to energy requirements for irrigation. For water use and related impacts, Indian ethanol scores worse due groundwater irrigation, despite the dampening effect of allocation. The variation on greenhouse gas emissions and non-renewable energy use of Indian mills is much larger for high and low performance than the respective systems in Brazil.

Conclusions

Important measures can be taken across the production chain to improve the environmental performance of Indian ethanol production (e.g. avoiding the use of specific pesticides, avoiding the disposal of untreated stillage, transition to water efficient crops). However, to meet the targets of the Indian ethanol blending programme, displacement effects are likely to occur in countries which export ethanol. To assess such effects, a consequential study needs to be prepared.  相似文献   

14.

Aims

Variation in boron (B) efficiency in citrus in different rootstock genotypes is expressed as large differences in the occurrence of leaf symptoms and dry mass production under low B conditions, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B uptake, cellular B allocation, and pectin content can explain genotype differences in B efficiency between B-efficient citrange (Citrus sinensis (L.) Osb. × Poncirus trifoliata (L.) Raf.) and B-inefficient trifoliate orange (Poncirus trifoliata (L.) Raf.) citrus rootstock.

Methods

Plants were grown hydroponically in a nutrient solution supplemented with 5 μM B for 14 days and then transferred to a B-free medium (0 μM B) or control medium (5 μM B) for 35 days. Boron uptake and allocation and cell wall pectin contents were examined.

Results

After 35 days under B deprivation, shoot dry mass in trifoliate orange decreased by 28 %, but shoot dry mass of citrange was not significantly affected. Root growth of both types of rootstock seedlings was inhibited, but the trifoliate orange was affected more than the citrange. In comparison with B concentrations in plants prior to the commencement of B treatments, B deprivation for 35 days decreased B concentration in various parts of citrange plants, and the reduction was much greater in trifoliate orange plants. Trifoliate orange seedlings contained higher B concentration and total B in cell wall on a dry leaf basis than citrange subject to 5 μM B treatment. However, the proportion of leaf B allocated in cell wall was higher in citrange than trifoliate orange when B supply was deficient in the nutrient. The changes in pectin composition in cell wall due to B deprivation differed between citrange and trifoliate orange. The decreased uronic acid (UA) content in the Na2CO3-soluble pectin was observed in both rootstock, but the increased UA content in CDTA-soluble pectin was observed only in citrange.

Conclusions

These results demonstrated that a combination of greater B uptake ability, greater B accumulation in cell walls, as well as the increased CDTA-soluble pectin, under limited external B supply, contribute to the integrity of cell walls in citrange and therefore increased tolerance to B deficiency.  相似文献   

15.

Purpose

A life cycle assessment was conducted to determine a baseline for environmental impacts of cheddar and mozzarella cheese consumption. Product loss/waste, as well as consumer transport and storage, is included. The study scope was from cradle-to-grave with particular emphasis on unit operations under the control of typical cheese-processing plants.

Methods

SimaPro© 7.3 (PRé Consultants, The Netherlands, 2013) was used as the primary modeling software. The ecoinvent life cycle inventory database was used for background unit processes (Frischknecht and Rebitzer, J Cleaner Prod 13(13–14):1337–1343, 2005), modified to incorporate US electricity (EarthShift 2012). Operational data was collected from 17 cheese-manufacturing plants representing 24 % of mozzarella production and 38 % of cheddar production in the USA. Incoming raw milk, cream, or dry milk solids were allocated to coproducts by mass of milk solids. Plant-level engineering assessments of allocation fractions were adopted for major inputs such as electricity, natural gas, and chemicals. Revenue-based allocation was applied for the remaining in-plant processes.

Results and discussion

Greenhouse gas (GHG) emissions are of significant interest. For cheddar, as sold at retail (63.2 % milk solids), the carbon footprint using the IPCC 2007 factors is 8.60 kg CO2e/kg cheese consumed with a 95 % confidence interval (CI) of 5.86–12.2 kg CO2e/kg. For mozzarella, as sold at retail (51.4 % milk solids), the carbon footprint is 7.28 kg CO2e/kg mozzarella consumed, with a 95 % CI of 5.13–9.89 kg CO2e/kg. Normalization of the results based on the IMPACT 2002+ life cycle impact assessment (LCIA) framework suggests that nutrient emissions from both the farm and manufacturing facility wastewater treatment represent the most significant relative impacts across multiple environmental midpoint indicators. Raw milk is the major contributor to most impact categories; thus, efforts to reduce milk/cheese loss across the supply chain are important.

Conclusions

On-farm mitigation efforts around enteric methane, manure management, phosphorus and nitrogen runoff, and pesticides used on crops and livestock can also significantly reduce impacts. Water-related impacts such as depletion and eutrophication can be considered resource management issues—specifically of water quantity and nutrients. Thus, all opportunities for water conservation should be evaluated, and cheese manufacturers, while not having direct control over crop irrigation, the largest water consumption activity, can investigate the water use efficiency of the milk they procure. The regionalized normalization, based on annual US per capita cheese consumption, showed that eutrophication represents the largest relative impact driven by phosphorus runoff from agricultural fields and emissions associated with whey-processing wastewater. Therefore, incorporating best practices around phosphorous and nitrogen management could yield improvements.  相似文献   

16.

Purpose

Many companies around the world have been challenged to make their products in a more sustainable way in the last decade in order to minimize their environmental impacts. Klabin, the largest producer, exporter, and recycler of paper in Brazil, has made great efforts to exchange old for new and more efficient equipment to produce cellulose packaging materials. The objective of this study was to measure the benefits of modernization of its plant located in the southern region of the country for manufacturing carrier board/folding box board (CB/FBB) and kraftliner paper (KP).

Methods

The goal established was analyzed through a cradle-to-gate life cycle assessment methodology.

Results and discussion

The modernization carried out has led to several improvements such as the reductions measured by the functional units of 1,000 kg of CB/FBB and 1,000 kg of KP, respectively, of energy consumption (21 and 3 %), water (8.5 % for CB/FBB only), wood (6.6 and 7.2 %), and land use (6.9 and 7.1 %). The environmental impact categories (according to CML 2001) that have suffered greater reductions are human toxicity (68 and 69 %), abiotic depletion (59 and 28 %), and global warming potential (51 and 9 %) for the same reference units.

Conclusions

The results achieved clearly show the importance of renewing industrial plant in order to achieve better environmental performance and also provide a historical inventory perspective for the company to establish future targets for improvement.  相似文献   

17.

Purpose

This life cycle assessment evaluates and quantifies the environmental impacts of renewable chemical production from forest residue via fast pyrolysis with hydrotreating/fluidized catalytic cracking (FCC) pathway.

Methods

The assessment input data are taken from Aspen Plus and greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. The SimaPro 7.3 software is employed to evaluate the environmental impacts.

Results and discussion

The results indicate that the net fossil energy input is 34.8 MJ to produce 1 kg of chemicals, and the net global warming potential (GWP) is ?0.53 kg CO2 eq. per kg chemicals produced under the proposed chemical production pathway. Sensitivity analysis indicates that bio-oil yields and chemical yields play the most important roles in the greenhouse gas footprints.

Conclusions

Fossil energy consumption and greenhouse gas (GHG) emissions can be reduced if commodity chemicals are produced via forest residue fast pyrolysis with hydrotreating/FCC pathway in place of conventional petroleum-based production pathways.  相似文献   

18.

Purpose

Proper recycling of mobile phones and other electronic products is important in order to reduce the generation of large amounts of hazardous waste, lessen environmental and social problems associated to the extraction of minerals and primary production of materials, and also minimize the depletion of scarce materials that are often difficult to substitute. Current material recovery processes are used to recycle electronic waste of various compositions.

Methods

Based on a review of the recycling processes and material flow analysis (MFA), we attribute the material and energy required to recover metals from 1 tonne of discarded mobile phones.

Results and discussion

We estimate that the recovery rates of gold, palladium, silver, copper, nickel, lead, antimony, and tin from the recycling processes described are 80 to 99 % (16.4 % of the phone in weight). The two main industrial processes used at present time (pyrometallurgical and combined pyro-hydrometallurgical) have similar energy consumptions (7,763 and 7,568 MJ/tonne of mobile phones, respectively). An average tonne of used mobile phones represents a potential of 128 kg of copper, 0.347 kg of gold, 0.15 kg of palladium, 3.63 kg of silver, 15 kg of nickel, 6 kg of lead, 1 kg of antimony, and 10 kg of tin as well as other metals that are not yet profitable to recover but might be in the future.

Conclusions

We find that the energy consumed to recover copper from mobile phones is half of that needed for copper primary extraction and similar or greater energy savings for precious metal refining. Nevertheless, only 2.5 % of mobile phones arrive to industrial recovery facilities. There is a great potential to increase the amount of metals being recovered, thereby reducing energy consumption and increasing resource efficiency.  相似文献   

19.

Purpose

The decentralization of the Brazilian electricity sector in association with the internal electricity supply crisis has encouraged companies in the sugarcane industry to produce electricity by burning sugarcane bagasse in cogeneration plants. This approach reduces the environmental impact of the sugarcane production and has opened up opportunities for distilleries and annex plants to increase their product portfolios. Potential scenarios for technically and environmentally improving the cogeneration performance were analyzed by using thermodynamic analysis and Life Cycle Assessment (LCA).

Methods

The method used in this study aimed to provide an understanding and a model of the electrical and thermal energy production and the environmental impacts of conventional vapor power systems which operate with a Rankine cycle that are commonly used by Brazilian distilleries. Vapor power system experts have suggested focusing on the following technical improvement areas: increasing the properties of the steam from 67 bar and 480 °C to 100 bar and 520 °C, regeneration, and reheating. Eight case scenarios were projected based on different combinations of these conditions. A functional unit of “To the delivery of 1.0 MWh of electricity to the power grid from a cogeneration system” was defined. The product system covers the environmental burdens of the industrial stage and the agricultural production of sugarcane.

Results and discussion

Technical evaluation indicated that the energy efficiency improves as the pressure at which the vapor leaves the boiler increases. Simultaneously, the net power exported to the grid increases and the makeup water consumption in the cooling tower and the makeup water supplied to the boiler reduce. From the LCA, it was noted that the improved energy performance of the system is accompanied by reduced environmental impacts for all evaluated categories. In addition, vapor production at 100 bar and 520 °C results in greater environmental gains, both in absolute and relative terms.

Conclusions

Reheating and regeneration concepts were found to be considerably effective in improving the energy and environmental performance of cogeneration systems by burning sugarcane bagasse. For the evaluated categories, the results indicate that the proposed modifications are favorable for increasing the efficiency of the thermodynamic cycle and for decreasing the environmental impacts of the product system.  相似文献   

20.

Purpose

The dairy sector covers multiple activities related to milk production and treatment for alimentary uses. Different dairy products are available in the markets, with yoghurt being the second most important in terms of production. The goal of this study was to analyse from a cradle-to-grave approach the environmental impacts and energy balance derived from the yoghurt (solid, stirred and drinking yoghurts) manufacture process in a specific dairy factory processing 100 % Portuguese raw milk.

Methods

The standard framework of life cycle assessment (LCA) was followed and inventory data were collected on site in the dairy factory and completed using the literature and databases. The following impact categories were evaluated adopting a CML method: abiotic depletion (ADP), acidification (AP), eutrophication (EP), global warming (GWP), ozone layer depletion (ODP), land competition (LC) and photochemical oxidants formation (POFP), with the energy analysis carried out based on the cumulative non-renewable fossil and nuclear energy demand (CED). A mass allocation approach was considered for the partitioning of the environmental burdens between the different products obtained since not only yoghurts are produced but also dairy fodder.

Results and discussion

The key processes from an environmental point of view were identified. Some of the potential results obtained were in line with other specific related studies where dairy systems were assessed from an LCA perspective. The production of the milk-based inputs (i.e. raw milk, concentrated and powdered milk) was the main factor responsible of the environmental loads and energy requirements, with remarkable contributions of 91 % of AP, 92 % of EP and 62 % of GWP. Other activities that have important environmental impacts include the production of the energy requirements in the dairy factory, packaging materials production and retailing. Potential alternatives were proposed in order to reduce the contributions to the environmental profile throughout the life cycle of the yoghurt. These alternatives were based on the minimisation of milk losses, reductions of distances travelled and energy consumption at retailing and household use, as well as changes to the formulation of the animal feed. All of these factors derived from light environmental reductions.

Conclusions

The main reductions of the environmental impact derived from yoghurt production can be primarily obtained at dairy farms, although important improvements could also be made at the dairy factory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号