首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Annelida is one of the major protostome phyla, whose deep phylogeny is very poorly understood. Recent molecular phylogenies show that Annelida may include groups once considered separate phyla (Pogonophora, Echiurida, and Sipunculida) and that Clitellata are derived polychaetes. SThe "total-evidence" analyses combining morphological and molecular characters have been published for a few annelid taxa. No attempt has yet been made to analyse simultaneously morphological and molecular information concerning the Annelida as a whole.  相似文献   

2.

Background

Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested.

Methodology/Principal Findings

Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada''s three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas.

Conclusions/Significance

Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor role in Arctic recolonization following deglaciation. This study highlights the value of DNA barcoding for providing rapid insights into species distributions and biogeographic patterns in understudied groups.  相似文献   

3.

Background  

The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh.  相似文献   

4.

Background

Paired mushroom bodies, an unpaired central complex, and bilaterally arranged clusters of olfactory glomeruli are among the most distinctive components of arthropod neuroarchitecture. Mushroom body neuropils, unpaired midline neuropils, and olfactory glomeruli also occur in the brains of some polychaete annelids, showing varying degrees of morphological similarity to their arthropod counterparts. Attempts to elucidate the evolutionary origin of these neuropils and to deduce an ancestral ground pattern of annelid cerebral complexity are impeded by the incomplete knowledge of annelid phylogeny and by a lack of comparative neuroanatomical data for this group. The present account aims to provide new morphological data for a broad range of annelid taxa in order to trace the occurrence and variability of higher brain centers in segmented worms.

Results

Immunohistochemically stained preparations provide comparative neuroanatomical data for representatives from 22 annelid species. The most prominent neuropil structures to be encountered in the annelid brain are the paired mushroom bodies that occur in a number of polychaete taxa. Mushroom bodies can in some cases be demonstrated to be closely associated with clusters of spheroid neuropils reminiscent of arthropod olfactory glomeruli. Less distinctive subcompartments of the annelid brain are unpaired midline neuropils that bear a remote resemblance to similar components in the arthropod brain. The occurrence of higher brain centers such as mushroom bodies, olfactory glomeruli, and unpaired midline neuropils seems to be restricted to errant polychaetes.

Conclusions

The implications of an assumed homology between annelid and arthropod mushroom bodies are discussed in light of the 'new animal phylogeny'. It is concluded that the apparent homology of mushroom bodies in distantly related groups has to be interpreted as a plesiomorphy, pointing towards a considerably complex neuroarchitecture inherited from the last common ancestor, Urbilateria. Within the annelid radiation, the lack of mushroom bodies in certain groups is explained by widespread secondary reductions owing to selective pressures unfavorable for the differentiation of elaborate brains. Evolutionary pathways of mushroom body neuropils in errant polychaetes remain enigmatic.  相似文献   

5.

Background

Telomeres are tandem repeats of TTAGGG at the end of eukaryotic chromosomes that play a key role in preventing chromosomal instability. The aim of the present study is to determine telomere length using fluorescence in situ hybridisation (FISH) on cytological specimens.

Methods

Aspiration samples (n = 41) were smeared on glass slides and used for FISH.

Results

Telomere signal intensity was significantly lower in positive cases (cases with malignancy, n = 25) as compared to negative cases (cases without malignancy, n = 16), and the same was observed for centromere intensity. The difference in DAPI intensity was not statistically significant. The ratio of telomere to centromere intensity did not show a significant difference between positive and negative cases. There was no statistical difference in the signal intensities of aspiration samples from ascites or pleural effusion (n = 23) and endoscopic ultrasound‐guided FNA samples from the pancreas (n = 18).

Conclusions

The present study revealed that telomere length can be used as an indicator to distinguish malignant and benign cells in cytological specimens. This novel approach may help improve diagnosis for cancer patients.  相似文献   

6.

Background  

Accurate taxonomy is best maintained if species are arranged as hierarchical groups in phylogenetic trees. This is especially important as trees grow larger as a consequence of a rapidly expanding sequence database. Hierarchical group names are typically manually assigned in trees, an approach that becomes unfeasible for very large topologies.  相似文献   

7.

Background  

Rice fields are efficient breeding places for malaria vectors in Madagascar. In order to establish as easily as possible if a rice field is an effective larval site for anophelines, we compared classical dipping versus a net as methods of collecting larvae.  相似文献   

8.

Background  

The evaluation, verification and comparison of different numerical heart models are difficult without a commonly available database that could be utilized as a reference. Our aim was to compile an exemplary dataset.  相似文献   

9.

Background  

The decision pro- or contra apoptosis is complex, involves a number of different inputs, and is central for the homeostasis of an individual cell as well as for the maintenance and regeneration of the complete organism.  相似文献   

10.

Aim

The abyssal Clarion-Clipperton Zone (CCZ), Pacific Ocean, is an area of commercial importance owing to the growing interest in mining high-grade polymetallic nodules at the seafloor for battery metals. Research into the spatial patterns of faunal diversity, composition, and population connectivity is needed to better understand the ecological impacts of potential resource extraction. Here, a DNA taxonomy approach is used to investigate regional-scale patterns of taxonomic and phylogenetic alpha and beta diversity, and genetic connectivity, of the dominant macrofaunal group (annelids) across a 6 million km2 region of the abyssal seafloor.

Location

The abyssal seafloor (3932–5055 m depth) of the Clarion-Clipperton Zone, equatorial Pacific Ocean.

Methods

We used a combination of new and published barcode data to study 1866 polychaete specimens using molecular species delimitation. Both phylogenetic and taxonomic alpha and beta diversity metrics were used to analyse spatial patterns of biodiversity. Connectivity analyses were based on haplotype distributions for a subset of the studied taxa.

Results

DNA taxonomy identified 291–314 polychaete species from the COI and 16S datasets respectively. Taxonomic and phylogenetic beta diversity between sites were relatively high and mostly explained by lineage turnover. Over half of pairwise comparisons were more phylogenetically distinct than expected based on their taxonomic diversity. Connectivity analyses in abundant, broadly distributed taxa suggest an absence of genetic structuring driven by geographical location.

Main Conclusions

Species diversity in abyssal Pacific polychaetes is high relative to other deep-sea regions. Results suggest that environmental filtering, where the environment selects against certain species, may play a significant role in regulating spatial patterns of biodiversity in the CCZ. A core group of widespread species have diverse haplotypes but are well connected over broad distances. Our data suggest that the high environmental and faunal heterogeneity of the CCZ should be considered in future policy decisions.  相似文献   

11.

Background  

Oat is an important crop in North America and northern Europe. In Scandinavia, yields are limited by the fact that oat cannot be used as a winter crop. In order to develop such a crop, more knowledge about mechanisms of cold tolerance in oat is required.  相似文献   

12.

Background  

The ATP levels of an organism are an important physiological parameter that is affected by genetic make up, ageing, stress and disease.  相似文献   

13.
14.
15.

Background  

A tendency to develop reentry orthostasis after a prolonged exposure to microgravity is a common problem among astronauts. The problem is 5 times more prevalent in female astronauts as compared to their male counterparts. The mechanisms responsible for this gender differentiation are poorly understood despite many detailed and complex investigations directed toward an analysis of the physiologic control systems involved.  相似文献   

16.

Background  

In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L.), also known as narrow-leaf lupin (NLL) is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch.  相似文献   

17.

Background

Members of the predatory gastropod genus Conus use a venom comprised of a cocktail of peptide neurotoxins, termed conotoxins or conopeptides, to paralyze prey and conotoxin gene family members diversify via strong positive selection. Because Conus venoms are used primarily to subdue prey, the evolution of venoms is likely affected by predator-prey interactions.

Methodology/Principal Findings

To identify the selective forces that drive the differentiation of venoms within species of Conus, we examined the distribution of alleles of a polymorphic O-superfamily conotoxin locus of Conus ebraeus at Okinawa, Guam and Hawaii. Previous analyses of mitochondrial cytochrome oxidase I gene sequences suggest that populations of C. ebraeus, a worm-eating Conus, are not structured genetically in the western and central Pacific. Nonetheless, because the sample size from Guam was relatively low, we obtained additional data from this location and reexamined patterns of genetic variation at the mitochondrial gene at Okinawa, Guam and Hawaii. We also utilized a DNA-based approach to identify prey items of individuals of C. ebraeus from Guam and compared this information to published data on diets at Okinawa and Hawaii. Our results show that conotoxin allelic frequencies differ significantly among all three locations, with strongest differentiation at Hawaii. We also confirm previous inferences that C. ebraeus exhibits no genetic differentiation between Okinawa, Guam and Hawaii at the mitochondrial locus. Finally, DNA-based analyses show that eunicid polychaetes comprise the majority of the prey items of C. ebraeus at Guam; while this results compares well with observed diet of this species at Okinawa, C. ebraeus preys predominantly on nereid polychaetes at Hawaii.

Conclusions/Significance

These results imply that strong selection pressures affect conotoxin allelic frequencies. Based on the dietary information, the selection may derive from geographic variation in dietary specialization and local coevolutionary arms races between Conus and their prey.  相似文献   

18.

Background  

Insulin resistance, which can lead to a number of diseases including type 2 diabetes and coronary heart disease, is believed to have evolved as an adaptation to periodic starvation. The "thrifty gene" and "thrifty phenotype" hypotheses constitute the dominant paradigm for over four decades. With an increasing understanding of the diverse effects of impairment of the insulin signaling pathway, the existing hypotheses are proving inadequate.  相似文献   

19.

Background  

Most genetic disorders are linked to missense mutations as even minor changes in the size or properties of an amino acid can alter or prevent the function of the protein. Further, the effect of a mutation is also dependent on the sequence and structure context of the alteration.  相似文献   

20.

Background  

The wild grass species Brachypodium distachyon (Brachypodium hereafter) is emerging as a new model system for grass crop genomics research and biofuel grass biology. A draft nuclear genome sequence is expected to be publicly available in the near future; an explosion of gene expression studies will undoubtedly follow. Therefore, stable reference genes are necessary to normalize the gene expression data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号