首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties of collagen fascicles from the rabbit patellar tendon   总被引:1,自引:0,他引:1  
Tensile and viscoelastic properties of collagen fascicles of approximately 300 microns in diameter, which were obtained from rabbit patellar tendons, were studied using a newly designed micro-tensile tester. Their cross-sectional areas were determined with a video dimension analyzer combined with a CCD camera and a low magnification microscope. There were no statistically significant differences in tensile properties among the fascicles obtained from six medial-to-lateral locations of the patellar tendon. Tangent modulus, tensile strength, and strain at failure of the fascicles determined at about 1.5 percent/s strain rate were 216 +/- 68 MPa, 17.2 +/- 4.1 MPa, and 10.9 +/- 1.6 percent (mean +/- S.D.), respectively. These properties were much different from those of bulk patellar tendons; for example, the tensile strength and strain at failure of these fascicles were 42 percent and 179 percent of those of bulk tendons, respectively. Tangent modulus and tensile strength of collagen fascicles determined at 1 percent/s strain rate were 35 percent larger than those at 0.01 percent/s. The strain at failure was independent of strain rate. Relaxation tests showed that the reduction of stress was approximately 25 percent at 300 seconds. These stress relaxation behavior and strain rate effects of collagen fascicles differed greatly from those of bulk tendons. The differences in tensile and viscoelastic properties between fascicles and bulk tendons may be attributable to ground substances, mechanical interaction between fascicles, and the difference of crimp structure of collagen fibrils.  相似文献   

2.
Tendons have complex mechanical behaviors that are nonlinear and time dependent. It is widely held that these behaviors are provided by the tissue composition and structure. It is generally thought that type I collagen provides the primary elastic strength to tendon while proteoglycans, such as decorin, play a role in failure and viscoelastic properties. This study sought to quantify such structure-function relationships by comparing tendon mechanical properties between normal mice and mice genetically engineered for altered type I collagen content and absence of decorin. Uniaxial tensile ramp to failure experiments were performed on tail tendon fascicles at two strain rates, 0.5%/s and 50%/s. Mutations in type I collagen led to reduced failure load and stiffness with no changes in failure stress, modulus or strain rate sensitivity. Fascicles without decorin had similar elastic properties to normal fascicles, but reduced strain rate sensitivity. Fascicles from immature mice, with increased decorin content compared to adult fascicles, had inferior elastic properties but higher strain rate sensitivity. These results showed that tendon viscoelasticity is affected by decorin content but not by collagen alterations. This study provides quantitative evidence for structure-function relationships in tendon, including the role of proteoglycan in viscoelasticity.  相似文献   

3.
Muscle fascicle lengths of vastus lateralis (VL) muscle were measured in five healthy men during slow pedaling to investigate the interaction between muscle fibers and tendon. Subjects cycled at a pedaling rate of 40 rpm (98 W). During exercise, fascicle lengths changed from 91 +/- 7 (SE) to 127 +/- 5 mm. It was suggested that fascicles were on the descending limb of their force-length relationship. The average shortening velocity of fascicle was greater than that of muscle-tendon complex in the first half of the knee extension phase and was less in the second half. The maximum shortening velocity of fascicle in the knee extension phase was less than that of muscle-tendon complex by 22 +/- 9%. These discrepancies in velocities were mainly caused by the elongation of the tendinous tissue. It was suggested that the elasticity of VL tendinous tissue enabled VL fascicles to develop force at closer length to their optimal length and kept the maximum shortening velocity of VL fascicles low during slow pedaling.  相似文献   

4.
Lateral force transmission between human tendon fascicles.   总被引:2,自引:0,他引:2  
Whether adjacent collagen fascicles transmit force in parallel is unknown. The purpose of the present study was to examine the magnitude of lateral force transmission between adjacent collagen fascicles from the human patellar and Achilles tendon. From each sample two adjacent strands of fascicles (phi 300-530 mum) enclosed in a fascicular membrane were dissected. The specimen was deformed to approximately 3% strain in three independent load-displacement cycles in a small-scale tensile testing device. Cycle 1: the fascicles and the fascicular membrane were intact. Cycle 2: one fascicle was transversally cut while the other fascicle and the fascicular membrane were kept intact. Cycle 3: both fascicles were cut in opposite ends while the fascicular membrane was left intact. A decline in peak force of 45% and 55% from cycle 1 to cycle 2, and 93% and 92% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. A decline in stiffness of 39% and 60% from cycle 1 to cycle 2, and of 93% and 100% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. The present data demonstrate that lateral force transmission between adjacent collagen fascicles in human tendons is small or negligible, suggesting that tendon fascicles largely act as independent structures and that force transmission principally takes place within the individual fascicles.  相似文献   

5.
The ultrastructural mechanism for strain rate sensitivity of collagenous tissue has not been well studied at the collagen fibril level. Our objective is to reveal the mechanistic contribution of tendon’s key structural component to strain rate sensitivity. We have investigated the structure of the collagen fibril undergoing tension at different strain rates. Tendon fascicles were pulled and fixed within the linear region (12% local tissue strain) at multiple strain rates. Although samples were pulled to the same percent elongation, the fibrils were noticed to elongate differently, increasing with strain rate. For the 0.1, 10, and 70%/s strain rates, there were 1.84±3.6%, 5.5±1.9%, and 7.03±2.2% elongations (mean±S.D.), respectively. We concluded that the collagen fibrils underwent significantly greater recruitment (fibril strain relative to global tissue strain) at higher strain rates. A better understanding of tendon mechanisms at lower hierarchical levels would help establish a basis for future development of constitutive models and assist in tissue replacement design.  相似文献   

6.
There is a scarcity of investigation into the mechanical properties of subdermal fat. Recently, progress has been made in the determination of subdermal stress and strain distributions. This requires accurate constitutive modelling and consideration of the subdermal tissues. This paper reports the results of a study to estimate non-linear elastic and viscoelastic properties of porcine subdermal fat using a simple constitutive model. High-resolution magnetic resonance imaging (MRI) was used to acquire a time series of coincident images during a confined indentation experiment. Inverse finite element analysis was used to estimate the material parameters. The Neo Hookean model was used to represent the elastic behaviour (μ = 0.53 ± 0.31 kPa), while a single-element Prony series was used to model the viscoelastic response (α = 0.39 ± 0.03, τ = 700 ± 255 s).  相似文献   

7.
B-mode ultrasound can be used to non-invasively image muscle fascicles during both static and dynamic contractions. Digitizing these muscle fascicles can be a timely and subjective process, and usually studies have used the images to determine the linear fascicle lengths. However, fascicle orientations can vary along each fascicle (curvature) and between fascicles. The purpose of this study was to develop and test two methods for automatically tracking fascicle orientation. Images were initially filtered using a multiscale vessel enhancement (a technique used to enhance tube-like structures), and then fascicle orientations quantified using either the Radon transform or wavelet analysis. Tests on synthetic images showed that these methods could identify fascicular orientation with errors of less than 0.06°. Manual digitization of muscle fascicles during a dynamic contraction resulted in a standard deviation of angle estimates of 1.41° across ten researchers. The Radon transform predicted fascicle orientations that were not significantly different from the manually digitized values, whilst the wavelet analysis resulted in angles that were 1.35° less, and reasons for these differences are discussed. The Radon transform can be used to identify the dominant fascicular orientation within an image, and thus used to estimate muscle fascicle lengths. The wavelet analysis additionally provides information on the local fascicle orientations and can be used to quantify fascicle curvatures and regional differences with fascicle orientation across an image.  相似文献   

8.
During terrestrial locomotion, limb muscles must generate mechanical work and stabilize joints against the ground reaction force. These demands can require high force production that imposes substantial loads on limb bones. To better understand how muscle contractile function influences patterns of bone loading in terrestrial locomotion, and refine force platform equilibrium models used to estimate limb bone safety factors, we correlated in vivo recordings of femoral strain with muscle activation and strain in a major propulsive hindlimb muscle, flexor tibialis internus (FTI), of a species with a published model of hindlimb force production (river cooter turtles, Pseudemys concinna). Electromyography (EMG) recordings indicate FTI activity prior to footfall that continues through approximately 50% of the stance phase. Large EMG bursts occur just after footfall when the muscle has reached its maximum length and is beginning to actively shorten, concurrent with increasing compressive strain on the anterior femur. The FTI muscle shortens through 35% of stance, with mean fascicle shortening strains reaching 14.0 ± 5.4% resting length (L0). At the time of peak compressive strains on the femur, the muscle fascicles remain active, but fascicles typically lengthen until mid‐stance as the knee extends. Influenced by the activity of the dorsal knee extensor femorotibialis, the FTI muscle continues to passively lengthen simultaneously with knee extension and a shift to tensile axial strain on the anterior femur at approximately 40% of stance. The near coincidence in timing of peak compressive bone strain and peak muscle shortening (5.4 ± 4.1% stance) indicates a close correlation between the action of the hip extensor/knee flexor, FTI, and femoral loading in the cooter hindlimb. In the context of equilibrium models of limb bone loading, these results may help explain differences in safety factor estimates observed between previous force platform and in vivo strain analyses in cooters. J. Morphol. 274:1060–1069, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig. A stereoscopic microscope equipped with a digital camera recorded elongation. The fascicles were preconditioned five cycles before the failure test based on pilot data on rat tendon fascicle. Human fascicle length increased with repeated cycles (P < 0.05); cycle 5 differed from cycle 1 (P < 0.05), but not cycles 2-4. Peak stress and yield stress were greater for anterior (76.0 +/- 9.5 and 56.6 +/- 10.4 MPa, respectively) than posterior fascicles (38.5 +/- 3.9 and 31.6 +/- 2.9 MPa, respectively), P < 0.05, while yield strain was similar (anterior 6.8 +/- 1.0%, posterior 8.7 +/- 1.4%). Tangent modulus was greater for the anterior (1,231 +/- 188 MPa) than the posterior (583 +/- 122 MPa) fascicles, P < 0.05. In conclusion, tendon fascicles from the anterior portion of the human patellar tendon in young men displayed considerably greater peak and yield stress and tangent modulus compared with the posterior portion of the tendon, indicating region-specific material properties.  相似文献   

10.
Fabric and growth mode of deep-water isidid gorgonian skeletons showing bright Mg-calcitic internodes and dark proteinageous nodes were investigated on modern, subrecent and fossil skeletons. The internodial microstructure is characterised by three-dimensionally interfingering calcitic fascicles accreting around a central axis. Macroscopic colour banding results from varying orientations of organic-rich fascicle bundles and intercalated bands of organic-poor granular crystals. This skeletal structure of isidid gorgonians strikingly differs from the density banding of scleractinians. Radiocarbon dating of a fossil skeleton gave an age of 3,985±35 to 3,680±35 years before present (BP) with a record of 305±35 years (±range). Linear extension rates of 0.4 mm year−1 average allow for an annual to sub-annual resolution on micrometer scale of colour bands or fascicles, respectively. The growth mode of branched skeletons is characterised by simultaneous secretion of vertically alternating nodes/internodes and lateral accretion of concentric increments enveloping the entire skeleton. Bifurcations at various growth stages imply that adjacent branches have different ages and show varying numbers of growth bands at any skeletal cross section. The scleroprotein gorgonin plays a crucial role in the formation of organic nodes and the secretion of calcitic internodes by providing a structural framework in the biomineralisation process.  相似文献   

11.
Individuals with spastic cerebral palsy (SCP) exhibit restricted joint range of motion and increased joint stiffness due to structural alterations of their muscles. Little is known about which muscle–tendon structures are responsible for these alterations. The aim of this study was to compare the passive mechanics of the ankle joint and medial gastrocnemius (MG) muscle in young adults with SCP and typically developed (TD) individuals. Nine ambulant SCP (17±2 years) and ten TD individuals (18±2 years) participated in the study. Physiological cross sectional area was estimated using freehand 3D ultrasound and found to be 37% lower in the SCP group. An isokinetic dynamometer rotated the ankle through its range while joint torque and ultrasound images of the MG muscle fascicles were simultaneously measured. Mean ankle stiffness was found to be 51% higher and mean MG fascicle strain 47% lower in the SCP group. Increased resistance to passive ankle dorsiflexion in SCP appears to be related to the inability of MG muscle fascicles to elongate with increased force.  相似文献   

12.
The glycosaminoglycan (GAG) dermatan sulfate and chondroitin sulfate side-chains of small leucine-rich proteoglycans have been increasingly posited to act as molecular cross links between adjacent collagen fibrils and to directly contribute to tendon elasticity. GAGs have also been implicated in tendon viscoelasticity, supposedly affecting frictional loss during elongation or fluid flow through the extra cellular matrix. The current study sought to systematically test these theories of tendon structure–function by investigating the mechanical repercussions of enzymatic depletion of GAG complexes by chondroitinase ABC in a reproducible tendon structure–function model (rat tail tendon fascicles). The extent of GAG removal (at least 93%) was verified by relevant spectrophotometric assays and transmission electron microscopy. Dynamic viscoelastic tensile tests on GAG depleted rat tail tendon fascicle were not mechanically different from controls in storage modulus (elastic behavior) over a wide range of strain-rates (0.05, 0.5, and 5% change in length per second) in either the linear or nonlinear regions of the material curve. Loss modulus (viscoelastic behavior) was only affected in the nonlinear region at the highest strain-rate, and even this effect was marginal (19% increased loss modulus, p = 0.035). Thus glycosaminoglycan chains of small leucine-rich proteoglycans do not appear to mediate dynamic elastic behavior nor do they appear to regulate the dynamic viscoelastic properties in rat tail tendon fascicles.  相似文献   

13.
Experimental reports suggest that cartilage damage depends on strain magnitude. Additionally, because of its poro-viscoelastic nature, strain magnitude in cartilage can depend on strain rate. The present study explores whether cartilage damage may develop dependent on strain rate, even when the presented damage numerical model is strain-dependent but not strain-rate-dependent. So far no experiments have been distinguished whether rate-dependent cartilage damage occurs in the collagen or in the non-fibrillar network. Thus, this research presents a finite element analysis model where, among others, collagen and non-fibrillar matrix are incorporated as well as a strain-dependent damage mechanism for these components. Collagen and non-fibrillar matrix stiffness decrease when a given strain is reached until complete failure upon reaching a maximum strain. With such model, indentation experiments at increasing strain rates were simulated on cartilage plugs and damage development was monitored over time. Collagen damage increased with increasing strain rate from 21 to 42 %. In contrast, damage in the non-fibrillar matrix decreased with increasing strain rates from 72 to 34 %. Damage started to develop at a depth of approximately 20 % of the sample height, and this was more pronounced for the slow and modest loading rates. However, the most severe damage at the end of the compression step occurred at the surface for the plugs subjected to 120 mm/min strain rate. In conclusion, the present study confirms that the location and magnitude of damage in cartilage may be strongly dependent on strain rate, even when damage occurs solely through a strain-dependent damage mechanism.  相似文献   

14.
Accidentology data showed that liver is often injured in car crashes; three types of injuries occur: hematoma, laceration and vessel failure. This paper focuses on surface laceration, which involves liver capsule and hepatic parenchyma. Liver capsule behavior has been studied but its failure properties are still unclear, particularly on a local point of view. In the present study, tensile quasi-static tests are run on parenchyma and capsule samples until failure to characterize capsule failure. Normalized load as well as failure properties—ultimate load per width unit and ultimate strain—are determined. Digital image correlation is used to measure the full local strain field on the capsule. Mean values of failure characteristics for hepatic capsule are 47±29% for the ultimate local strain and 0.3±0.3 N/mm for the ultimate load per width unit. A comparison between human and porcine tissues is conducted based on Mann–Whitney statistical test; it reveals that capsule characteristics are close between these two species; however, freezing preservation significantly affects porcine capsule failure properties. Therefore using porcine instead of human tissue to determine failure characteristics of liver capsule seems satisfactory only on fresh tissues.  相似文献   

15.
Stress, strain and modulus are regularly used to characterize material properties of tissue samples. However, when comparing results from different studies it is evident the reported material properties, particularly failure strains, vary hugely. The aim of our study was to characterize how and why specimen length and cross-sectional area (CSA) appear to influence failure stress, strain and modulus in fascicles from two functionally different tendons. Fascicles were dissected from five rat tails and five bovine foot extensors, their diameters determined by a laser micrometer, and loaded to failure at a range of grip-to-grip lengths. Strain to failure significantly decreased with increasing in specimen length in both rat and bovine fascicles, while modulus increased. Specimen length did not influence failure stress in rat tail fascicles, although in bovine fascicles it was significantly lower in the longer 40 mm specimens compared to 5 and 10 mm specimens. The variations in failure strain and modulus with sample length could be predominantly explained by end-effects. However, it was also evident that strain fields along the sample length were highly variable and notably larger towards the ends of the sample than the mid-section even at distances in excess of 5 mm from the gripping points. Failure strain, stress and modulus correlated significantly with CSA at certain specimen lengths. Our findings have implications for the mechanical testing of tendon tissue: while it is not always possible to control for fascicle length and/or CSA, these parameters have to be taken into account when comparing samples of different dimensions.  相似文献   

16.
Explants of fetal rat sensory ganglia, cultured under conditions allowing axon and Schwann cell outgrowth in the absence of fibroblasts, occasionally develop nerve fascicles that are partially suspended in culture medium above the collagen substrate. In these suspended regions, fascicles are abnormal in that Schwann cells are decreased in number, are confined to occasional clusters along the fascicle, provide ensheathment for only a few axons at the fascicle periphery, and do not form myelin. When these fascicles are presented with a substrate of reconstituted rat-tail collagen, Schwann cell numbers increase, ensheathment of small nerve fibers occurs normally, and larger axons are myelinated. We conclude that, for normal development, Schwann cells require contact with extracellular matrix as well as axons. The Schwann cell abnormalities in suspended fascicles are similar to those observed in nerve roots of dystrophic mice.  相似文献   

17.
Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle’s contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques.  相似文献   

18.
Instantaneous contractile characteristics of skeletal muscle, during movement tasks, can be determined and related to steady state mechanical properties such as the force–length relationship with the use of ultrasound imaging. A previous investigation into the contractile characteristics of the vastus lateralis (VL) during cycling has shown that fascicles operate on the “weak” descending limb of the force–length relationship, thus not taking advantage of the “strong” plateau region. The purpose of this study was to investigate if VL fascicle lengths change from sub-maximal to maximal cycling conditions, and if maximal cycling results in VL fascicle lengths which operate across the plateau of the force–length relationship. Fifteen healthy male subjects (age 20.9±1.8 yr, wt. 67.0±6.3 kg, ht. 176.7±7.2 cm) were tested to establish the maximal force–length relationship for the VL through ten maximal isometric contractions at various knee angles. Subjects then cycled on an SRM cycle ergometer at cadences of 50 and 80 revolutions per minute at 100 W, 250 W, and maximal effort. Fascicle lengths were determined at crank angles of 0, 90, and 180°. Fascicles operated at or near the plateau of the maximal force–length relationship for maximal cycling, while operating on the descending limb during sub-maximal conditions for both cadences. However, when comparing the fascicle operating range for the sub-maximal cycling conditions to the corresponding sub-maximal force–length relationships, the VL now also operated across the plateau region. We concluded from these results that regardless of cycling effort, the VL operated through the ideal plateau region of the corresponding force–length relationship, hence always working optimally. We hypothesize that this phenomenon is due to the coupling of series elastic compliance and length dependent calcium sensitivity in the VL.  相似文献   

19.
The transmission of mechanical muscle force to bone for musculoskeletal stability and movement is one of the most important functions of tendon. The load-bearing tendon core is composed of highly aligned collagen-rich fascicles interspersed with stromal cells (tenocytes). Despite being built to bear very high mechanical stresses, supra-physiological/repetitive mechanical overloading leads to tendon microdamage in fascicles, and potentially to tendon disease and rupture. To date, it is unclear to what extent intrinsic healing mechanisms of the tendon core compartment can repair microdamage. In the present study, we investigated the healing capacity of the tendon core compartment in an ex vivo tissue explant model. To do so, we isolated rat tail tendon fascicles, damaged them by applying a single stretch to various degrees of sub-rupture damage and longitudinally assessed downstream functional and structural changes over a period of several days. Functional damage was assessed by changes in the elastic modulus of the material stress-strain curves, and biological viability of the resident tenocytes. Structural damage was quantified using a fluorescent collagen hybridizing peptide (CHP) to label mechanically disrupted collagen structures. While we observed functional mechanical damage for strains above 2% of the initial fascicle length, structural collagen damage was only detectable for 6% strain and beyond. Minimally loaded/damaged fascicles (2–4% strain) progressively lost elastic modulus over the course of tissue culture, despite their collagen structures remaining intact with high degree of maintained cell viability. In contrast, more severely overloaded fascicles (6–8% strain) with damage at the molecular/collagen level showed no further loss of the elastic modulus but markedly decreased cell viability. Surprisingly, in these heavily damaged fascicles the elastic modulus partially recovered, an effect also seen in further experiments on devitalized fascicles, implying the possibility of a non-cellular but matrix-driven mechanism of molecular repair. Overall, our findings indicate that the tendon core has very little capacity for self-repair of microdamage. We conclude that stromal tenocytes likely do not play a major role in anabolic repair of tendon matrix microdamage, but rather mediate catabolic matrix breakdown and communication with extrinsic cells that are able to effect tissue repair.  相似文献   

20.
In this study we investigated the time course of length and velocity of muscle fascicles and tendinous tissues (TT) during isometric twitch contraction, and examined how their interaction relates to the time course of external torque and muscle fascicle force generation. From seven males, supra-maximal twitch contractions (singlet) of the tibialis anterior muscle were induced at 30 degrees , 10 degrees and -10 degrees plantar flexed positions. The length and velocity of fascicles and TT were determined from a series of their transverse ultrasound images. The maximal external torque appeared when the shortening velocity of fascicles was zero. The fascicle and TT length, and external torque showed a 10-30 ms delay of each onset, with a significant difference in half relaxation times at -10 degrees . The time course of TT elongation, and fascicle and tendinous velocities did not differ between joint angles. Curvilinear length-force properties, whose slope of quasi-linear part was ranged from -15.0 to -5.9 N/mm for fascicles and 5.4 to 14.3N/mm for TT, and a loop-like pattern of velocity-force properties, in which the mean power was ranged from 0.14 to 0.80 W for fascicles, and 0.14 to 0.81 W for TT were also observed. These results were attributed to the muscle-tendon interaction, depending on the slack and non-linearity of length-force relationship of compliant TT. We conclude that the mechanical interaction between fascicles and TT, are significant determinants of twitch force and time characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号