首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A bacteriocin-producing strain of the bacterial spot of tomato plant pathogen, Xanthomonas perforans, with attenuated pathogenicity was deployed for biocontrol of a bacteriocin-sensitive strain of the genetically closely related bacterial spot of tomato plant pathogen, X. euvesicatoria. The attenuated mutant (91-118ΔopgHΔbcnB) of X. perforans was tested in leaf tissue and shown to significantly inhibit internal populations of the wild-type X. euvesicatoria strain although significantly less than the wild-type 91-118 strain, whereas in a phyllosphere inhibition assay, the mutant strain reduced epiphytic populations comparably to 91-118. Thus, the attenuated mutant limited the sensitive bacterium more efficiently on the leaf surface than inside the leaf. In field experiments, weekly application of 91-118ΔopgHΔbcnB significantly reduced X. euvesicatoria populations compared to the growers’ standard control (copper hydroxide and mancozeb applied weekly and acibenzolar-S-methyl applied every 2 weeks). The biological control agent, 91-118ΔopgHΔbcnB, applied every 2 weeks also significantly reduced X. euvesicatoria populations in one season but was not significantly different from the growers’ standard control. Potentially, attenuated pathogenic strains could be deployed as biological control agents in order to improve disease control of foliar plant pathogens.Bacterial spot of tomato is incited by several Xanthomonas spp., including Xanthomonas euvesicatoria, X. perforans, and X. vesicatoria (13). On tomato plants, three races, designated tomato race 1 (T1), T2, and T3, were originally identified based on their reactions on three tomato genotypes (22, 23, 33, 37). These races, T1, T2, and T3, are principally members of X. euvesicatoria, X. vesicatoria, and X. perforans, respectively. Control of bacterial spot of tomato is extremely difficult when moderate-to-high temperatures and high moisture conditions exist. The disease causes significant damage to the crop, resulting in major losses (27). Management is primarily limited to bactericides, such as fixed coppers (3, 20, 32); however, copper-tolerant strains have become prevalent (31, 32) and chemical control alone is insufficient to control the disease under optimal weather conditions. Additionally, the use of copper compounds has led to soil contamination in some instances (16).Recently, there has been increased interest in integrated biological control strategies for bacterial diseases (5, 7, 11, 19, 23). However, optimization of biocontrol agents for consistent disease suppression for many bacterial diseases has been difficult. Studies are increasing our understanding of the ecology of nonpathogenic saprophytes as biocontrol agents, but their selection is limited to labor-intensive protocols. New biological control strategies are currently being sought, including the use of bacteriocins, bacteriophages, and attenuated plant pathogens (4, 5, 7, 9, 11, 23, 26, 35, 38).For many years, only X. euvesicatoria (T1) was present on tomato plants in Florida. In 1991, X. perforans (T3) appeared in Florida tomato fields (15) and eventually became the prevalent race (14). Following that observation, Jones et al. (12) demonstrated that when X. perforans and X. euvesicatoria were coinoculated onto tomato plants in the field, X. perforans displaced X. euvesicatoria and became the predominant strain. Further studies revealed that the competitive nature of X. perforans was due in large part to its antagonism toward X. euvesicatoria strains (9, 12, 36). Tudor-Nelson et al. (36) identified three different bacteriocins, designated BCN-A, BCN-B, and BCN-C, which were found to confer the ability to inhibit X. euvesicatoria strains in plate assays. Hert et al. (9) determined that these bacteriocins provided X. perforans strains with a competitive advantage in the greenhouse and field and that a mutant X. perforans strain expressing only BCN-A and BCN-C was most effective in displacing X. euvesicatoria and outcompeted wild-type (WT) X. perforans. Field experiments conducted with a nonpathogenic Hrp strain of X. perforans as a potential biocontrol agent for controlling X. euvesicatoria resulted in marginal control (18). Although the WT X. perforans strain has a competitive advantage over X. euvesicatoria populations, Hrp mutants such as that used in the study by Liu (18) do not appear to have the necessary competitiveness to suppress X. euvesicatoria populations.Previous research has focused on colonization of the plant by biocontrol agents to determine the relationship between invasion efficiency and biological control efficacy. For example, Frey et al. (8) achieved only low-to-moderate levels of biological control of a WT bacteriocin-sensitive strain of Ralstonia solanacearum when using a bacteriocin-producing nonpathogenic Hrp mutant strain of R. solanacearum. However, control using a moderately pathogenic hrp mutant (hrcV) capable of higher levels of colonization of the root and stem achieved greater disease suppression (6). Etchebar et al. (6) suggested that there was a positive correlation between colonization of the xylem by the hrp mutant and the level of control of WT R. solanacearum. As a result of previous studies showing that nonpathogenic strains of X. perforans only provide low levels of biological control (18), we hypothesized that using an attenuated pathogenic bacteriocin-producing strain of X. perforans rather than a nonpathogenic strain may increase the efficiency of control under field conditions.In this study, our strategy was to use an attenuated mutant of X. perforans that colonizes leaf tissue more effectively than nonpathogenic strains do and potentially provides more effective colonization and increases the likelihood for interaction between X. perforans and X. euvesicatoria. We selected strain 91-118ΔopgHΔbcnB as the biocontrol agent since it was previously shown that deletion of the osmoregulated periplasmic glucan gene opgH resulted in a pathogenic phenotype with a significantly reduced ability to cause disease and internal colonization in susceptible tomato tissue (22). The selected mutant also lacked BcnB activity based on a previous study in which BcnB appeared to negatively affect competitive ability in that a ΔbcnB mutant was more effective at colonizing tomato leaves in field experiments than WT X. perforans was (9).  相似文献   

2.
In a previous study, tomato race 3 (T3) strains of Xanthomonas perforans became predominant in fields containing both X. euvesicatoria and X. perforans races T1 and T3, respectively. This apparent ability to take over fields led to the discovery that there are three bacteriocin-like compounds associated with T3 strains. T3 strain 91-118 produces at least three different bacteriocin-like compounds (BCN-A, BCN-B, and BCN-C) antagonistic toward T1 strains. We determined the relative importance of the bacteriocin-like compounds by constructing the following mutant forms of a wild-type (WT) T3 strain to evaluate the antagonism to WT T1 strains: Mut-A (BCN-A), Mut-B (BCN-B), Mut-C (BCN-C), Mut-AB, Mut-BC, and Mut-ABC. Although all mutant and WT T3 strains reduced the T1 populations in in planta growth room experiments, Mut-B and WT T3 were significantly more effective. Mutants expressing BCN-B and either BCN-A or BCN-C reduced T1 populations less than mutants expressing only BCN-A or BCN-C. The triple-knockout mutant Mut-ABC also had a significant competitive advantage over the T1 strain. In pairwise-inoculation field experiments where plants were coinoculated with an individual mutant or WT T3 strain and the T1 strain, the mutant strains and the WT T3 strain were reisolated from more than 70% of the lesions. WT T3 and Mut-B were the most frequently reisolated strains. In field experiments where plants were group inoculated with Mut-A, Mut-B, Mut-C, Mut-ABC, and WT T1 and T3 strains, Mut-B populations dominated all three seasons. In greenhouse and field experiments, the WT and mutant T3 strains had a selective advantage over T1 strains. Bacterial strains expressing both BCN-A and BCN-C appeared to have a competitive advantage over all other mutant and WT strains. Furthermore, BCN-B appeared to be a negative factor, with mutant T3 strains lacking BCN-B having a selective advantage in the field.  相似文献   

3.
The goal of this study was to investigate the role of lipopolysaccharides (LPS) in induction of resistance in tomato against the causal agent of bacterial spot, Xanthomonas perforans. The results showed that pre-treatment with LPS leads to enhancing resistance of tomato against X. perforans. In addition, expression profiling of β-1,3-glucanase (BGL), Phenylalanine ammonia-lyase (PAL) and catalase (CAT) was examined during the induced resistance by LPS. The effect of LPS on induction of BGL, PAL and CAT was demonstrated in the present study. The data suggest that the effect of LPS on resistance of tomato against X. perforans could be through activation of some defence genes such as of BGL, PAL and CAT which afford defence responses against the pathogen. Our findings might help to better understanding the molecular bases of the induced resistance by LPS.  相似文献   

4.
Integration of foliar bacterial biological control agents and plant growth promoting rhizobacteria (PGPR) was investigated to determine whether biological control of bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, and bacterial spot of tomato, caused by Xanthomonas campestris pv. vesicatoria and Xanthomonas vesicatoria, could be improved. Three foliar biological control agents and two selected PGPR strains were employed in pairwise combinations. The foliar biological control agents had previously demonstrated moderate control of bacterial speck or bacterial spot when applied as foliar sprays. The PGPR strains were selected in this study based on their capacity to induce resistance against bacterial speck when applied as seed and soil treatments in the greenhouse. Field trials were conducted in Alabama, Florida, and California for evaluation of the efficacy in control of bacterial speck and in Alabama and Florida for control of bacterial spot. The foliar biological control agent P. syringae strain Cit7 was the most effective of the three foliar biological control agents, providing significant suppression of bacterial speck in all field trials and bacterial spot in two out of three field trials. When applied as a seed treatment and soil drench, PGPR strain Pseudomonas fluorescens 89B-61 significantly reduced foliar severity of bacterial speck in the field trial in California and in three of six disease ratings in the field trials in Alabama. PGPR strains 89B-61 and Bacillus pumilus SE34 both provided significant suppression of bacterial spot in the two field trials conducted in Alabama. Combined use of foliar biological control agent Cit7 and PGPR strain 89B-61 provided significant control of bacterial speck and spot of tomato in each trial. In one field trial, control was enhanced significantly with combined biological control agents compared to single agent inoculations. These results suggest that some PGPR strains may induce plant resistance under field conditions, providing effective suppression of bacterial speck and spot of tomato, and that there may be some benefit to the integration of rhizosphere-applied PGPR and foliar-applied biological control agents.  相似文献   

5.
A total of 198 bacterial strains were isolated from various niches of saline–alkali soils, out of which 85 strains were able to solubilize phosphate on plates at 30 °C. The strain RMLU-26, identified as Xanthomonas campestris, was the most efficient with its ability to solubilize P, subjected to N-methyl-N′-nitro-N-nitrosoguanidine (NTG) for development of mutants. The P solubilizing ability of X. campestris is reported for the first time. The wild type and mutant strains of X. campestris revealed a differential response to various stress factors (high pH, temperature, and salt concentration). The mutant strain revealed maximum P solubilization (67.1%) at 30 °C and pH 8.0 while the wild type strain showed maximum solubilization (41.9%) at 35 °C and pH 7.0. Percent P2O5 solubilization by both strains revealed a steep decline in tricalcium phosphate solubilization with an increase in NaCl concentration from 0.5 to 10% along with a concomitant drop in pH of the medium from 8.0 to 4.5 in wild type and 4.0 in mutant strain. However, a 1.5- to 2-fold increase in ‘P’ solubilization was observed in the mutant strain when compared to the wild type strain in the presence of NaCl. The overall improved tolerance of the strains to alkalinity and salinity could be due to accumulation and/or secretion of specific solute (xanthan).  相似文献   

6.
Disease symptomsSymptoms include water‐soaked areas surrounded by chlorosis turning into necrotic spots on all aerial parts of plants. On tomato fruits, small, water‐soaked, or slightly raised pale‐green spots with greenish‐white halos are formed, ultimately becoming dark brown and slightly sunken with a scabby or wart‐like surface.Host rangeMain and economically important hosts include different types of tomatoes and peppers. Alternative solanaceous and nonsolanaceous hosts include Datura spp., Hyoscyamus spp., Lycium spp., Nicotiana rustica, Physalis spp., Solanum spp., Amaranthus lividus, Emilia fosbergii, Euphorbia heterophylla, Nicandra physaloides, Physalis pubescens, Sida glomerata, and Solanum americanum.Taxonomic status of the pathogenDomain, Bacteria; phylum, Proteobacteria; class, Gammaproteobacteria; order, Xanthomonadales; family, Xanthomonadaceae; genus, Xanthomonas; species, X. euvesicatoria, X. hortorum, X. vesicatoria.Synonyms (nonpreferred scientific names) Bacterium exitiosum, Bacterium vesicatorium, Phytomonas exitiosa, Phytomonas vesicatoria, Pseudomonas exitiosa, Pseudomonas gardneri, Pseudomonas vesicatoria, Xanthomonas axonopodis pv. vesicatoria, Xanthomonas campestris pv. vesicatoria, Xanthomonas cynarae pv. gardneri, Xanthomonas gardneri, Xanthomonas perforans.Microbiological propertiesColonies are gram‐negative, oxidase‐negative, and catalase‐positive and have oxidative metabolism. Pale‐yellow domed circular colonies of 1–2 mm in diameter grow on general culture media.DistributionThe bacteria are widespread in Africa, Brazil, Canada and the USA, Australia, eastern Europe, and south‐east Asia. Occurrence in western Europe is restricted.Phytosanitary categorizationA2 no. 157, EU Annex designation II/A2.EPPO codesXANTEU, XANTGA, XANTPF, XANTVE.  相似文献   

7.
【目的】由青枯雷尔氏菌(Ralstonia solanacearum)引起的植物青枯病是一种毁灭性土传病害。胞外多糖(extracellular polysaccharides,EPS)是青枯雷尔氏菌关键的致病因子之一。通过构建胞外多糖缺失突变株,研究胞外多糖在青枯病致病中的作用。【方法】从青枯雷尔氏菌FJAT-91的基因组中克隆出胞外多糖合成结构基因epsD同源臂,克隆至自杀性质粒p K18mobsacB,再将庆大霉素抗性基因(Gm)插入同源臂中间,获得重组质粒p K18-epsD。将重组质粒转化至青枯雷尔氏菌FJAT-91感受态细胞中,通过同源重组敲除epsD基因,获得EPS合成缺失的突变株FJAT-91Δeps 。研究突变株与野生菌株在菌落形态、胞外多糖合成、运动能力、定殖能力的差异性。【结果】突变菌株FJAT-91ΔepsD与出发菌株FJAT-91相比:胞外多糖产量显著减少,生长较慢;泳动能力(swimming motility)和群集运动能力(swarming motility)显著降低;在番茄苗根部和茎部的定殖能力显著降低;弱化指数(AI)为0.905,鉴定为无致病力菌株。【结论】胞外多糖在青枯雷尔氏菌的致病中起着关键的作用,本课题研究成果为开发植物疫苗提供了优良的材料与研究基础。  相似文献   

8.
【背景】野油菜黄单胞菌(Xanthomonas campestris pv. campestris, Xcc)引起十字花科植物黑腐病,在全球范围内造成经济损失,亟须深入研究其致病机理,开发新的黑腐病防控措施。细菌脂肪酸合成系统不仅为细胞膜合成提供原料,其中间代谢产物还是许多生物活性分子合成的底物,具有重要的生理功能,也是抗菌药物筛选的重要靶标。【目的】研究XccfabZ对扩散信号分子(diffusible signal factor, DSF)类信号产量、致病力、胞外酶、胞外多糖和运动性等方面的影响。【方法】利用报告菌株检测法分析了不同替换突变株的DSF类群体感应信号产量。利用同源重组原理,在DSF类信号高产菌株中获得替换突变株,利用高效液相色谱(highperformanceliquid chromatography, HPLC)法测定DSF类信号产量。利用剪叶法检测替换突变株对寄主植物甘蓝的致病力,并分析了不同菌株的胞外多糖、胞外酶和运动性差异。【结果】报告菌株检测法和HPLC法都证明大肠杆菌fabZ替换突变株(XccΔfabZ/pSRK-EcfabZ)中DSF类信号产量显著下降。...  相似文献   

9.
【目的】研究地毯草黄单胞菌双组分系统VgrS-VgrR与致病性的关系,为木薯细菌性病害的高效防控提供分子生物学证据。【方法】采用同源重组方法构建vgrS和vgrR的插入失活突变体,用可移动的cosmid载体p HM1构建互补菌株。检测突变体的致病性、细菌游动性、胞外酶、胞外多糖的变化,观察细菌对H_2O_2和金属离子胁迫的反应。【结果】相比野生型菌株,vgrS和vgrR突变体接种寄主植物木薯后致病力显著降低,突变体的游动性减少、蛋白酶活性减弱、H_2O_2耐受性降低,在高浓度金属离子Fe2+、Fe3+、Cu2+、Ni2+、Zn2+、Co2+的胁迫条件下菌体生长显著减弱。然而,vgrS和vgrR突变体的胞外多糖含量显著升高,分别是野生型的2.14和1.89倍。【结论】阐明了VgrS-VgrR系统在细菌致病过程中发挥的重要作用,为鉴定VgrS-VgrR调控机制提供线索,为药物筛选提供靶向目标。  相似文献   

10.
We report in this study for the first time the occurrence of bacterial spot of pepper in Iran and both phenotypic and genetic characterization of its causal agent, Xanthomonas euvesicatoria. Pepper plants grown in 15 of 30 surveyed private gardens and commercial fields were infected by the pathogen in Marand County, East Azerbaijan Province, north‐western Iran. The obtained strains of X. euvesicatoria had different amylolytic and pectolytic activities compared with those reported for this species elsewhere. Pathogenicity tests showed that strains isolated from diseased pepper are able to infect tomato, in addition to pepper. Host range of the pathogen was assessed on eight annual plant species including crops and weeds by measuring the population dynamics. The host range assessment showed that in addition to pepper and tomato, known hosts of X. euvesicatoria, the Iranian strains were able to colonize a number of new hosts such as nightshade and common bean. In contrast, none of them were able to build up their population on cowpea, eggplant, bindweed and zucchini. All X. euvesicatoria strains obtained in this study were sensitive to copper sulphate and streptomycin at concentrations higher than 20 and 50 mg/l, respectively. Phylogenetic analyses of the strains using the sequences of gyrB and hrpB genes confirmed their species as X. euvesicatoria. Given a direct commercial trade of fresh solanaceous vegetables between Iran and Turkey, it is hypothesized that the pathogen entered north‐western Iran from eastern parts of Turkey through infected plant materials. Finally, the role of prevention – based on the use of healthy planting materials and resistant and/or tolerant plant varieties – to contain the potential disease epidemics is discussed.  相似文献   

11.
Thymidylate synthetase mutants of Xanthomonas maltophilia ATCC 13270 were isolated on a solid minimal medium containing 50 mg/l thymidine and a high concentration of trimethoprim (500 mg/l). It was found that a high concentration of trimethoprim was required to prevent background growth of the wild-type strain. The isolated mutants could grow on thymidine or dTMP at a concentration of 50 mg/l while they were unable to grow on 1000 mg/l thymine or 50 mg/l deoxyridine. Thymidylate synthetase activity was assayed in the wild-type cells and in the mutant cells but only the wild-type cells contained measurable enzyme activity.  相似文献   

12.
Chen L  Hu B  Qian G  Wang C  Yang W  Han Z  Liu F 《Archives of microbiology》2009,191(2):163-170
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. This study identified and characterized the contribution of the twin-arginine translocation (Tat) pathway to motility, chemotaxis, extracellular polysaccharide (EPS) production and virulence in X. oryzae pv. oryzae strain PXO99. The tatC disruption mutant (strain TCM) of strain PXO99 were generated, and confirmed both by PCR and Southern blotting. Strain PXO99 cells were highly motile in NYGB 0.3% soft agar plate. In contrast, the tatC mutation impaired motility. Furthermore, strain TCM cells lacked detectable flagella and exhibited almost no chemotaxis toward glucose under aerobic conditions, indicating that the Tat secretion pathway contributed to flagellar biogenesis and chemotactic responses. It was also observed that strain TCM exhibited a reductive production of extracellular polysaccharide (EPS) and a significant reduction of virulence on rice plants when compared with the wild type PXO99. However, the tatC mutation in strain PXO99 did not affect growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). Our findings indicated that the Tat system of X. oryzae pv. oryzae played an important role in the pathogen’s virulence. L. Chen, B. Hu, and G. Qian contributed equally to this research.  相似文献   

13.
The isolation and characterization of mutant alleles in a regulatory gene affecting NADP+-dependent enzymes are described. The locus,mex, is at position 26.5 ± 0.74 on the X chromosome ofDrosophila melanogaster. The newly isolated mutant allele,mex 1, is recessive to either themex allele found in Oregon-R wild-type individuals or that found in thecm v parental stock in which the new mutants were induced. Themex 1 mutant allele is associated with statistically significant decreases in malic enzyme (ME) specific activity and ME specific immunologically cross-reacting material (ME-CRM) in newly emerged adult males. During this same developmental stage in males, the NADP+-dependent isocitrate dehydrogenase specific activity increases to statistically significant levels. Females of themex 1 mutant strain show statistically significant elevated levels of the pentose phosphate shunt enzymes, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Isoelectric focusing and thermolability comparisons of the active ME from mutant and control organisms indicate that the enzyme is the same. Developmental profiles ofmex 1 and control strains indicate that this mutant allele differentially modulates the levels of ME enzymatic activity and ME-CRM during development. This work was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to M.M.B.  相似文献   

14.
Following the relatively successful biological control of bacterial speck of tomato under field conditions at several locations (Phytopathology 92 (2002) 1284), similar selection and testing strategies were employed in an effort to isolate an effective biological control agent for bacterial spot of tomato. Fifty potential biological control agents were isolated from tomato foliage in Alabama (AL) and Florida (FL) and tested under greenhouse conditions in AL for the ability to reduce the foliar severity of bacterial spot of tomato (Lycopersicon esculentum), which is caused by either Xanthomonas campestris pv. vesicatoria or Xanthomonas vesicatoria. Three pseudomonads that provided protection against bacterial speck also were included in the tests. The strains which were most efficacious (i.e., high mean percentage reduction) and consistent (i.e., low standard deviation) in reducing bacterial spot severity in repeated greenhouse experiments were selected for field experiments conducted over the period 1996–1998. Among these strains were Cellulomonas turbata BT1, which provided the highest mean reduction in disease severity [45.2% (SD = 21.0)], and Pseudomonas syringae Cit7 [36.4% (SD = 12.2)], which was the most consistent. Field experiments were conducted in Shorter, AL; Bradenton and Sanford, FL; Clinton, North Carolina; Wooster, Ohio; and London, Ontario, Canada. The highest mean reductions in severity of bacterial spot on foliage, averaged across all locations, were provided by P. syringae Cit7 [28.9% (SD = 11.6)] and Pseudomonas putida B56 [23.1% (SD = 7.4)]. The efficacy and consistency of P. syringae Cit7 against bacterial spot were very similar to those achieved against bacterial speck [28.3% (SD = 12.7)] (Phytopathology 92 (2002) 1284). Unfortunately, neither the bacterial strains nor the standard copper bactericides consistently reduced disease incidence on fruit.  相似文献   

15.
The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA gene’s function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G1 (AFG1). LC–MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG1. We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG1 from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A. parasiticus strain significantly enhanced the AFG1 formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG1, which required NADPH or NADH, indicating that NADA is a precursor of AFG1; in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme required for G-aflatoxin biosynthesis from OMST, and that it catalyzes the reaction from NADA to AFG1, the last step in G-aflatoxin biosynthesis.  相似文献   

16.
Summary Mutants ofXanthomonas campestris B 1459 were isolated that are defective in secretion of both cellulase and amylase. Both enzymes accumulated in the periplasmic space. The defects in secretion of cellulase or amylase were partly overcome by introducing into the mutants specific multiple copies of DNA cloned fromX. campestris, and presumed to code for cellulase or amylase enzymes. The mutant strains also showed reduced amounts of extracellular pectinase and protease activities, as if the mutants were generally defective for secretion of extracellular enzymes. The mutants showed reduced pathogenesis for turnip seedlings. The secretion-defective mutants may allow production of xanthan gum with reduced cellulose, pectin, protein and starch-degrading enzyme activities, thereby allowing more widespread mixing of microbially produced xanthan gum with these commercially important water-soluble polymers.  相似文献   

17.
Assessment of pathogen diversity in agricultural fields is essential for informing management decisions and the development of resistant plant varieties. However, many population genomic studies have relied on culture-based approaches that do not provide quantitative assessment of pathogen populations at the field-level or the associated host microbiome. Here, we applied whole-genome shotgun sequencing of microbial DNA extracted directly from the washings of pooled leaf samples, collected from individual tomato and pepper fields in Alabama that displayed the classical symptoms of bacterial spot disease caused by Xanthomonas spp. Our results revealed that while the occurrence of both X. perforans and X. euvesicatoria within fields was limited, evidence of co-occurrence of up to three distinct X. perforans genotypes was obtained in 7 of 10 tomato fields sampled. These population dynamics were accompanied by the corresponding type 3 secreted effector repertoires associated with the co-occurring X. perforans genotypes, indicating that metapopulation structure within fields should be considered when assessing the adaptive potential of X. perforans. Finally, analysis of microbial community composition revealed that co-occurrence of the bacterial spot pathogens Pseudomonas cichorii and Xanthomonas spp. is common in Alabama fields and provided evidence for the non-random association of several other human and plant opportunists.  相似文献   

18.
Summary Mutants of a tomato strain ofXanthomonas campestris pv.vesicatoria (XCV), causal agent of bacterial spot of tomato and pepper, were produced using the transposon Tn5 carried in the suicide plasmid pGS9. One prototrophic mutant, M461, was isolated which caused no visible reaction on tomato or pepper, but maintained the wild-type ability to induce a hypersensitive reaction (HR) on tobacco. This mutant showed similar growth characteristics to the wild-type in culture, but growth in planta was reduced. A genomic library of wild-type XCV was constructed in the broad host range cosmid vector pLAFR3. Clone p6AD4 restored pathogenicity to M461 on tomato and the ability to induce a HR on pepper. This clone contained ca. 22 kb of XCV DNA. The insertion in M461 was in a site corresponding to a 1.1 kbEcoRI fragment of p6AD4.  相似文献   

19.
Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue‐cultured plantlets grown in vitro. Six mutants of strain XaFL07‐1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly‐β‐hydroxybutyrate than the wild‐type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non‐ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild‐type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.  相似文献   

20.
Bacterial spot caused by Xanthomonas perforans (Xp) is an economically important disease in tomato. Previous studies have shown that the recently isolated Xp strains have acquired and retained the effector gene, xopJ2, which has been reported to increase fitness of the pathogen in the field. To elucidate the fitness benefit of xopJ2, we quantified the effect of xopJ2 on the dispersal and evolution of Xp populations on tomato. We compared movement of two wild-type Xp strains expressing xopJ2 to their respective xopJ2 mutants when co-inoculated in the field. We developed a binary logistic model to predict the presence of Xp over spatial and temporal dimensions with or without xopJ2. Based on the model, wild-type bacteria were dispersed approximately three times faster than the xopJ2 mutants. In a simulation experiment, the selective advantage due to increased dispersal velocity led to an increase in the frequency of xopJ2 gene in the Xp population and its apparent fixation within 10 to 12 cropping seasons of the tomato crop. Our results show that the presence of a single gene can affect the dispersal of a bacterial pathogen and significantly alter its population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号