首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of Cryptic β-Fructofuranosidase in Saccharomyces rouxii   总被引:3,自引:1,他引:2       下载免费PDF全文
Raffinose hydrolysis was studied in Saccharomyces rouxii. The responsible enzyme was identified as a beta-fructofuranosidase (EC 3.2.1.26), which has a pH optimum of 5.5 and a K(m) of 83 mM for raffinose. This enzyme was cryptic in cells from a 3-day culture. A 2-min treatment with 0.1 volume of ethyl acetate in sodium acetate buffer (pH 6) gave complete expression of the enzyme, which was still retained by the cell. Ghosts were prepared by modifying membrane structure with small basic proteins in distilled water, and after washing they showed the full complement of enzymatic activity. The enzyme remained cryptic in osmotically protected spheroplasts; however, after lysis (by dilution) release, as well as expression, was effected. Mechanical disruption of fresh cells revealed and released all of the enzyme. Cells in early stationary phase had all of their beta-fructofuranosidase in a cryptic state. Aging yielded fractional expression of activity; initially this was proportional to cell death, but later the degree of expression exceeded the death rate. Media from aged cultures or cell-free extracts of aged cells were not effective in revealing the cryptic enzyme of younger cells. S. rouxii beta-fructofuranosidase has a different autolytic-release pattern from its counterpart in S. cerevisiae. Also, high concentrations of glucose do not repress the S. rouxii enzyme. The beta-fructofuranosidase in young cells of S. rouxii must be enclosed by the protoplasmic membrane or a special vesicular structure. This system was compared with other Saccharomyces species in connection with the translocation of enzymes across the protoplasmic membrane.  相似文献   

2.
Intact cells of Streptococcus faecalis and Micrococcus lysodeikticus were found to have high-frequency electric conductivities of 0.90 and 0.68 mho/m, respectively. These measured values, which reflect movements of ions both within the cytoplasm and within the cell wall space, were only about one-third of those calculated on the basis of determinations of the amounts and types of small ions within the cells. Concentrated suspensions of bacteria with damaged membranes showed similarly large disparities between measured and predicted conductivities, whereas the conductivities of diluted suspensions were about equal to predicted values. Thus, the low mobilities of intracellular ions appeared to be interpretable in terms of the physicochemical behavior of electrolytes in concentrated mixtures of small ions and cell polymers. In contrast to the low measured values for conductivity of intact bacteria, values for intracellular osmolality measured by means of a quantitative plasmolysis technique were higher than expected. For example, the plasmolysis threshold for S. faecalis cells indicated an internal osmolality of about 1.0 osmol/kg, compared with a value of only 0.81 osmol/liter of cell water calculated from a knowledge of the cell content and the distribution of small solutes. In all, our results indicate that most of the small ions within vegetative bacterial cells are free to move in an electric field and that they contribute to cytoplasmic osmolality.  相似文献   

3.
After 16 hr of incubation in a low-phosphate, aerated medium, bakers' yeast was obtained with a high titer of acid phosphatase (EC 3.1.3.2) and beta-fructofuranosidase (EC 3.2.1.26). All of the beta-fructofuranosidase and 75% of the acid phosphatase were easily released by mechanical disruption in a French pressure cell. The cell wall suffered a limited number of cracks, but this was sufficient for the co-release of these enzymes. Both enzymes were subject to autolytic release, although correlation was inconclusive because of the relative instability of acid phosphatase. The data are consistent with the bulk of the two enzymes being located in the periplasmic space. Ethylacetate treatments yielded ghosts with high beta-fructofuranosidase but low acid phosphatase activities. The surviving acid phosphatase was not representative of that in live cells. It was resistant to release by mechanical disruption and showed a high susceptibility to heat inactivation. The beta-fructofuranosidase in live cells and in ethylacetatetreated cells exhibited polydispersity in heat inactivation susceptibility; but the kinetics were indistinguishable, and facile release by mechanical disruption was shown in both cases.  相似文献   

4.
Cultured potato ( Solanum tuberosum L., cv. Red Pontiac) cells suspended in PEG 1000 solutions of 0.6 and O.S osmol exhibited significantly different freezing tolerance from the same cells when suspended in PEG 6000 solutions of the same osmolalities. Cells suspended in PEG 6000 showed cytorhysis instead of plasmolysis. Cells in 0.2 and 0.4 osmol PEG 1000 had LT50(1 of −2.5°C, but the LT50 decreased to −7.50C as the osmolality increased to 0.8 osmol. In PEG 6000 the LT50 remained at −2.50C for all osmolalities used, up to and including 0.8 osmol.
Released protoplasts suspended in 0.5 M sucrose had LT50 of −21.5°C, compared to −12°C for whole cells suspended in the same medium. These results lend credence to an involvement of the cell wall in freezing injury of cultured potato cells, and are interpreted in terms of the generation of a mechanical stress between cell wall and plasma membrane during the freeze-thaw cycle.  相似文献   

5.
The hydraulic water permeability (Lp) of the cell membranes of Necturus gallbladder epithelial cells was estimated from the rate of change of cell volume after a change in the osmolality of the bathing solution. Cell volume was calculated from computer reconstruction of light microscopic images of epithelial cells obtained by the "optical slice" technique. The tissue was mounted in a miniature Ussing chamber designed to achieve optimal optical properties, rapid bath exchange, and negligible unstirred layer thickness. The control solution contained only 80% of the normal NaCl concentration, the remainder of the osmolality was made up by mannitol, a condition that did not significantly decrease the fluid absorption rate in gallbladder sac preparations. The osmotic gradient ranged from 11.5 to 41 mosmol and was achieved by the addition or removal of mannitol from the perfusion solutions. The Lp of the apical membrane of the cell was 1.0 X 10(-3) cm/s . osmol (Posm = 0.055 cm/s) and that of the basolateral membrane was 2.2 X 10(-3) cm/s . osmol (Posm = 0.12 cm/s). These values were sufficiently high so that normal fluid absorption by Necturus gallbladder could be accomplished by a 2.4-mosmol solute gradient across the apical membrane and a 1.1-mosmol gradient across the basolateral membrane. After the initial cell shrinkage or swelling resulting from the anisotonic mucosal or serosal medium, cell volume returned rapidly toward the control value despite the fact that one bathing solution remained anisotonic. This volume regulatory response was not influenced by serosal ouabain or reduction of bath NaCl concentration to 10 mM. Complete removal of mucosal perfusate NaCl abolished volume regulation after cell shrinkage. Estimates were also made of the reflection coefficient for NaCl and urea at the apical cell membrane and of the velocity of water flow across the cytoplasm.  相似文献   

6.
The methanogenic Archaea, like the Bacteria and Eucarya, possess several osmoregulatory strategies that enable them to adapt to osmotic changes in their environment. The physiological responses of Methanosarcina species to different osmotic pressures were studied in extracellular osmolalities ranging from 0.3 to 2.0 osmol/kg. Regardless of the isolation source, the maximum rate of growth for species from freshwater, sewage, and marine sources occurred in extracellular osmolalities between 0.62 and 1.0 osmol/kg and decreased to minimal detectable growth as the solute concentration approached 2.0 osmol/kg. The steady-state water-accessible volume of Methanosarcina thermophila showed a disproportionate decrease of 30% between 0.3 and 0.6 osmol/kg and then a linear decrease of 22% as the solute concentration in the media increased from 0.6 to 2.0 osmol/kg. The total intracellular K(sup+) ion concentration in M. thermophila increased from 0.12 to 0.5 mol/kg as the medium osmolality was raised from 0.3 to 1.0 osmol/kg and then remained above 0.4 mol/kg as extracellular osmolality was increased to 2.0 osmol/kg. Concurrent with K(sup+) accumulation, M. thermophila synthesized and accumulated (alpha)-glutamate as the predominant intracellular osmoprotectant in media containing up to 1.0 osmol of solute per kg. At medium osmolalities greater than 1.0 osmol/kg, the (alpha)-glutamate concentration leveled off and the zwitterionic (beta)-amino acid N(sup(epsilon))-acetyl-(beta)-lysine was synthesized, accumulating to an intracellular concentration exceeding 1.1 osmol/kg at an osmolality of 2.0 osmol/kg. When glycine betaine was added to culture medium, it caused partial repression of de novo (alpha)-glutamate and N(sup(epsilon))-acetyl-(beta)-lysine synthesis and was accumulated by the cell as the predominant compatible solute. The distribution and concentration of compatible solutes in eight strains representing five Methanosarcina spp. were similar to those found in M. thermophila grown in extracellular osmolalities of 0.3 and 2.0 osmol/kg. Results of this study demonstrate that the mechanism of halotolerance in Methanosarcina spp. involves the regulation of K(sup+), (alpha)-glutamate, N(sup(epsilon))-acetyl-(beta)-lysine, and glycine betaine accumulation in response to the osmotic effects of extracellular solute.  相似文献   

7.
The osmotolerance of Saccharomyces rouxii 48-28 was confirmed with both NaCl- and KCl-fortified growth media, with more tolerance being exhibited for the potassium salt. Washed and buffered cells from unfortified medium were challenged with a variety of compounds (and also with physical treatments) that potentially would elicit membrane perturbations. The efficacy of these brief treatments was judged primarily by monitoring subsequent viability. Change in the degree of expression of beta-fructofuranosidase (EC 3.2.1.26), which is cryptic in young cells of S. rouxii, was a second criterion. There was a linear correlation between cell death and enzyme expression for treatments with polyenes, detergents, some organic solvents which did not denature the enzyme, and various freeze-thaw regimens in graded amounts of glycerol. The species is relatively insensitive to polyene antimycotics, the order of decreasing effect being filipin, nystatin, and amphotericin B. S. rouxii was found to be less sensitive to osmotic shock than is Saccharomyces cerevisiae, but in neither species is beta-fructofuranosidase released to the medium. The sensitivity of S. rouxii to ionic detergents, but not to nonionic detergents, was rationalized as being due to cell wall discrimination against larger micelles for the nonionic examples. This was confirmed by showing that protoplasts were sensitive to both classes. In cultures older than 5 days the normal agreement between colony-forming units and methylene blue exclusion (another test of viability) no longer held. Delayed fermentation of sucrose by S. rouxii, which is a diagnostic feature of the species, is explained by death of some cells, expression of their beta-fructofuranosidase, and utilization of the monosaccharides by the surviving cells.  相似文献   

8.
Intact cells of marine pseudomonad B-16 (ATCC 19855) which have been washed with a solution of NaCl require only 0.001 M MgSO4 and 100 to 300 times this concentration of NaCl or KCl to prevent lysis. Conversion of intact cells to mureinoplasts, a process involving removal of the outer double-track layer (outer membrane) and the periplasmic space layer of the cell wall, approximately doubled the requirement for the three salts to prevent lysis. The formation of protoplasts from mureinoplasts by removing the peptidoglycan layer again doubled the requirement for Na+ and K+ salts but increased the requirement for the Mg-2+ salt 200- to 300-fold. Cells of the marine pseudomonad suspended in solutions containing Mg-2+ salts failed to lyse on subsequent repeated suspension in distilled water, whereas cells presuspended in NaCl lysed immediately. Isolated envelope layers including the peptidoglycan layer, when dialyzed against solutiions containing Mg-2+ salts, retained Mg-2+ after subsequent suspension in distilled water. Envelope layers exposed to solutions of Na+ or K+ salts failed to retain these ions after exposure to distilled water. Na+ displaced Mg-2+ from the cell envelope layers. The results obtained indicate that the capacity of Mg-2+ salts at very low concentration to prevent lysis of intact cells and mureinoplasts of this organism is due primarily to the interaction of Mg-2+ with the peptidoglycan layer of the cell wall. Ion interaction with the layers lying outside of the peptidoglycan layer contributes only a small amount to the mechanical strength of the wall.  相似文献   

9.
A simple and rapid procedure for the preparation of yeast and fungal DNA samples useful in PCR amplification was developed. The DNA was purified from proteins, lipids, polysaccharides, and other impurities by their high-temperature extraction (in a boiling water bath) with buffer solutions containing chaotropic salts. Under these conditions, yeast and fungal cell envelopes remain unbroken and retain the original DNA and RNA that could be used for direct PCR amplification. We called the proposed PCR technique as the PCR using DNA-containing cell envelopes.  相似文献   

10.
A simple and rapid procedure for the preparation of yeast and fungal DNA samples useful in PCR amplification was developed. The DNA was purified from proteins, lipids, polysaccharides, and other impurities by high-temperature extraction (in a boiling water bath) with buffer solutions containing chaotropic salts. Under these conditions, yeast and fungal cell envelopes remain unbroken and retain the original DNA and RNA that could be used for direct PCR amplification. We called the proposed PCR technique as the PCR using DNA-containing cell envelopes.  相似文献   

11.
Pressure-treated log growth cultures (14,000 psi equivalent to 966 x 10(5) N/m2 for 4 h) of Saccharomyces cerevisiae were fractionated across a linear Ficoll gradient by zonal rotor centrifugation. This procedure separated the yeast cells on the basis of size and volume into a continuum of cell cycle ages. Cell survival and petite mutation frequency were determined for several zonal fractions. Survival of yeast cells after pressure treatment was maximal in zonal fractions obtained from either the top (single cells in G1) or the botton ("doublets") of the gradient. Intermediate zonal fractions showed more lethality, with minimal survival occurring in zonal fractions containing a large proportion of yeast cells in which buds were just beginning to emerge (initiation of S phase). The petite mutation frequency was minimal in zonal fractions from the top (single cells in G1) and bottom ("doublets") of the gradient. Induction increased to a maximum in those fractions containing cells in S phase.  相似文献   

12.
Cerebral osmoreceptors mediate thirst and neurohypophyseal secretion stimulated by increases in the effective osmolality of plasma (P(osmol)). The present experiments determined whether an intragastric load of hypertonic saline (ig HS; 0.5 M NaCl, 4 ml) would potentiate these responses before induced increases in P(osmol) in the general circulation could be detected by cerebral osmoreceptors. Adult rats deprived of water overnight and then given intragastric HS consumed much more water in 15-30 min than rats given either pretreatment alone, even though systemic P(osmol) had not yet increased significantly because of the gastric load. In other rats pretreated with an intravenous infusion of 1 M NaCl (2 ml/h for 2 h), plasma levels of vasopressin and oxytocin were considerably elevated 15 and 25 min after intragastric HS treatment, whereas systemic P(osmol) was not increased further. These and other findings are consistent with previous reports that hepatic portal osmoreceptors (or Na(+) receptors) stimulate thirst and neurohypophyseal hormone secretion in euhydrated rats given gastric NaCl loads and indicate that these effects are potentiated when animals are dehydrated.  相似文献   

13.
The reported absence of a cell wall in halobacteria cannot be confirmed. Improved fixation techniques clearly show a cell wall-like structure on the surface of these cells. A stepwise reduction of the salt concentration causes the release of cell wall material before the cell membrane begins to disintegrate. The cell membrane breaks up into fragments of variable but rather small size, which are clearly different from a 4S component reported by others to be the major breakdown product of the cell membrane. It appears more likely that the 4S component arises from the dissolution of the cell wall. A residue of large membranous sheets remains even after prolonged exposure of halobacteria envelopes to distilled water. The lipids in these sheets do not differ significantly from the lipids in the lysed part of the cell membrane. The sheets, however, contain a purple-colored substance, which is not present in the lysed part. The easily sedimentable residue that remains after lysis of the cells or envelopes in distilled water also contains "intracytoplasmic membranes" with unusual structural characteristics. They can also be identified in sections through intact bacteria or envelope preparations. Their function is at present unknown but seems to be related to the formation of gas vacuoles in these organisms.  相似文献   

14.
The effects of hyperosmotic stress and adaption on the aqueous cytoplasm of Phaeodactylum tricornutum have been studied with spin labels using 0.2M external Ni2+ to obtain spectra solely from labels within the cells. From partitioning of the TEMPO spin label between the internal aqueous phase and the membrane it is found that the internal volume of the cells decreased by approx. 50-60% in media of high osmotic strength (1.9 osmol/l). During the accumulation of proline in the cells (8.8 mg/ml packed cells) on incubation in the medium of high osmolarity for 3 days, the recovery of the volume was 80%. Further addition of proline to the medium resulted in an increase in the proline concentration in the cells (12.2 mg/ml packed cells) and a recovery in volume of 90%. Cells incubated in the absence of any nitrogen source showed very little recovery and were in a stressed state even in the absence of an osmotic gradient. From the rotational correlation times of the TEMPONE spin label it was found that the effective microviscosity in the cytoplasm of normal cells (approx. 3-8 cP) was considerably higher than that of the external medium (1 cP) and increased 1.5-2-fold under high osmotic stress (1.9 osmol/l). Adaption during the accumulation of proline only decreased the effective microviscosity by approx. 50% of the stressed-induced increase, a considerably smaller recovery than that of the cell volume.  相似文献   

15.
Osmotic water permeability of Necturus gallbladder epithelium   总被引:6,自引:5,他引:1       下载免费PDF全文
An electrophysiological technique that is sensitive to small changes in cell water content and has good temporal resolution was used to determine the hydraulic permeability (Lp) of Necturus gallbladder epithelium. The epithelial cells were loaded with the impermeant cation tetramethylammonium (TMA+) by transient exposure to the pore-forming ionophore nystatin in the presence of bathing solution TMA+. Upon removal of the nystatin a small amount of TMA+ is trapped within the cell. Changes in cell water content result in changes in intracellular TMA+ activity which are measured with intracellular ion-sensitive microelectrodes. We describe a method that allows us to determine the time course for the increase or decrease in the concentration of osmotic solute at the membrane surface, which allows for continuous monitoring of the difference in osmolality across the apical membrane. We also describe a new method for the determination of transepithelial hydraulic permeability (Ltp). Apical and basolateral membrane Lp's were assessed from the initial rates of change in cell water volume in response to anisosmotic mucosal or serosal bathing solutions, respectively. The corresponding values for apical and basolateral membrane Lp's were 0.66 x 10(-3) and 0.38 x 10(-3) cm/s.osmol/kg, respectively. This method underestimates the true Lp values because the nominal osmotic differences (delta II) cannot be imposed instantaneously, and because it is not possible to measure the true initial rate of volume change. A model was developed that allows for the simultaneous determination of both apical and basal membrane Lp's from a unilateral exposure to an anisosmotic bathing solution (mucosal). The estimates of apical and basal Lp with this method were 1.16 x 10(-3) and 0.84 x 10(-3) cm/s.osmol/kg, respectively. The values of Lp for the apical and basal cell membranes are sufficiently large that only a small (less than 3 mosmol/kg) transepithelial difference in osmolality is required to drive the observed rate of spontaneous fluid absorption by the gallbladder. Furthermore, comparison of membrane and transepithelial Lp's suggests that a large fraction of the transepithelial water flow is across the cells rather than across the tight junctions.  相似文献   

16.
Summary Stillage recycle in beet molasses alcoholic fermentation can be lower the production costs by a decrease of energy requirements for waste water treatment but it becomes necessary to optimise, separately, the sugar and non sugar contents of the wort. It is shown that the increase of the wort osmolality, linked to stillage recycle disturbs yeast metabolism above 1,5 osmol. The observed inhibition which is dependent on both sugar and non sugar concentrations leads to an apparent link between yeast behaviour and the dry matter percent of the worts.  相似文献   

17.
The effects of hypersaline treatment (osmotic upshock) on cell water relations were examined in the Gram-positive bacterium Bacillus subtilis using particle size analysis. Application of the Boyle-van't Hoff relationship (cell volume versus reciprocal of external osmolality) permitted direct determination of turgor pressure, which was approximately 0.75 osmol kg-1 (1.9 MPa) in exponentially growing bacteria in a defined medium. The abolition of turgor pressure immediately after upshock and the subsequent recovery of turgor were investigated. Recovery of turgor was K+ dependent. Calculation of turgor by an alternative method involving spectrophotometric analysis of shrinkage gave somewhat lower estimates of turgor pressure.  相似文献   

18.
To test the hypothesis that acute hypoxia does not modify the relationship between plasma vasopressin concentration ([AVP](p)) and plasma osmolality (P(osmol)) during exercise and that the increase in [AVP](p) during exercise is due mainly to the exercise intensity-dependent increase in P(osmol), we examined [AVP](p) during a graded exercise in a hypoxic condition (13% O(2), N(2) balance) in seven healthy male subjects. A graded exercise in a normoxic condition on a separate day served as the control. Hypoxia reduced peak aerobic power (VO(2 peak)) by 32.4 +/- 2.7%. Blood samples obtained during rest and at around 25, 45, 65, 80, and 100% of VO(2 peak) of each of the respective conditions were used for analyses of intravascular water and electrolyte balance. The pattern of the changes in fluid and electrolyte balance in response to percent VO(2 peak) was similar between the two conditions. Plasma volume decreased linearly as percent VO(2 peak) increased while P(osmol) increased in a curvilinear fashion with a steep increase occurring at above approximately 66% VO(2 peak). Above this relative exercise intensity, plasma sodium, potassium, and lactate concentrations also increased, whereas plasma bicarbonate concentration decreased. Thus transvascular fluid movement at above approximately 66% VO(2 peak) was due to the net efflux of hypotonic fluid out of the vascular space in both conditions. The relationship between [AVP](p) and P(osmol) during exercise in response to relative exercise intensity was similar between the two conditions. The results indicate that acute mild hypoxia itself has no direct effect on vasopressin release, and it does not modify the relationship between [AVP](p) and P(osmol) during exercise. The results also support the hypothesis that exercise-induced vasopressin release is primarily stimulated by increased P(osmol) produced by hypotonic fluid movement out of the vascular space in a relative exercise intensity-dependent manner.  相似文献   

19.
Cells of Saccharomyces cerevisiae and Hansenula anomala were digested with snail enzyme under conditions yielding prospheroplasts. Surrounding envelopes were isolated after lysis of prospheroplasts in distilled water. The envelope material was embedded and sectioned for electron microscopy, and thin, hollow structures still retaining the elongated form of the original cells were seen. The envelopes were of low electron density in sections stained with uranyl magnesium acetate and lead citrate, but were more electron-dense when stained with phosphotungstic acid. Shadowed preparations of prospheroplast envelopes revealed structures resembling ghosts. These "ghosts" were similar to the original cells in form and size but seemed to be very thin. Varying numbers of anular structures (bud scars) were found on them. Chemical analyses of the envelope indicated that an alkali-soluble glucan was a major constituent. The results show that the prospheroplast envelope is part of the original cell wall of the yeast and is located in close apposition to the cytoplasmic membrane.  相似文献   

20.
The effects of hyperosmotic stress and adaption on the aqueous cytoplasm of Phaeodactylum tricornutum have been studied with spin labels using 0.2 M external Ni2+ to obtain spectra solely from labels within the cells. From partitioning of the TEMPO spin label between the internal aqueous phase and the membrane it is found that the internal volume of the cells decreased by approx. 50–60% in media of high osmotic strength (1.9 osmol/l). During the accumulation of proline in the cells (8.8 mg/ml packed cells) on incubation in the medium of high osmolarity for 3 days, the recovery of the volume was 80%. Further addition of proline to the medium resulted in an increase in the proline concentration in the cells (12.2 mg/ml packed cells) and a recovery in volume of 90%. Cells incubated in the absence of any nitrogen source showed very little recovery and were in a stressed state even in the absence of an osmotic gradient. From the rotational correlation times of the TEMPONE spin label it was found that the effective microviscosity in the cytoplasm of normal cells (approx. 3–8 cP) was considerably higher than that of the external medium (1 cP) and increased 1.5–2-fold under high osmotic stress (1.9 osmol/l). Adaption during the accumulation of proline only decreased the effective microviscosity by approx. 50% of the stressed-induced increase, a considerably smaller recovery than that of the cell volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号