首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alcohol dehydrogenase (ADH) null mutant of Drosophila melanogaster (AdhnLA405) originally recovered following X-ray irradiation of mature sperm (Aaron, 979) is analyzed by Southern blotting, Western blotting, and DNA sequencing. The genetic, immunologic, and nucleic acid sequence data are consistent with the hypothesis that a cross-over event, independent of X-irradiation, between parental chromosomes is responsible for the ADH null phenotype of AdhnLA405. By DNA-sequence analysis we show that molecular cloning of this locus (i.e., propagation in prokaryotic hosts) apparently does not introduce any spurious changes (substitutions, additions, deletions, or rearrangements) within the DNA.  相似文献   

2.
3.
Twenty-three alcohol dehydrogenase (ADH) putative null alleles extracted from four Tasmanian (Australia) populations of Drosophila melanogaster produce no ADH activity and are unable to form active heterodimers with either AdhF or AdhS. Twelve of these nulls were tested by enzyme-linked immunosorbent assay (ELISA) and did not produce any ADH cross-reacting material (CRM). The null homozygotes had similar, but slightly lower, mortalities on ethanol-supplemented media compared to an artificially induced null allele. Heterozygotes between the null alleles and standard AdhF and AdhS alleles had intermediate ADH activity and CRM levels.  相似文献   

4.
Anaerobic tolerant null (ATN) is a recessive factor that allows alcohol dehydrogenase-1 (ADH1) null individuals of Zea mays L. to survive 24 h of anaerobic conditions. ADH1 null lines that do not possess this factor survive only a few hours of anoxia. We studied ADH activity levels in protein extracts from the primary root tissue of ATN. ADH levels were similar in ATN and other ADH1 null lines, suggesting that ADH activity does not account for differences in the ability of ATN to survive anaerobic treatment. The ATN survival trait segregated as a single recessive locus in crosses between ATN and double null (Adh1-S5657, Adh2-33). We also made crosses between ATN and 1s2p, an inbred line with ADH1 activity that carries an electrophoretic mutation of Adh2, to determine whether atn increases the number of survivors over that which would be expected from the segregation of Adh1 alone and to use the Adh2P allele to study the cosegregation of Adh2 and atn. The observed number of survivors in that cross exceeded the expected number of survivors by a margin consistent with a single recessive gene adding to the ADH+ survivors. Extracts from the primary root or scutellum of induced F2 seedlings from the above crosses were assayed for ADH activity by native polyacrylamide gel electrophoresis (PAGE) and simultaneously scored for survival to determine whether Adh2 and atn were segregating independently. We screened the (ATN x 1s2p)F2 progeny for ADH1 activity by staining root tips with an ADH-specific stain to select Adh1 null individuals prior to gel assay. Atn was found to be assorting independently of Adh1 and Adh2 in both crosses.  相似文献   

5.
6.
Summary Using the alcohol dehydrogenase (ADH) locus a genetic sexing system is being developed in the Mediterranean fruit fly Ceratitis capitata based on the sensitivity of ADH null mutations to environmental ethanol. A series of null mutants have been induced at this locus, however, none proved viable as homozygotes. One of these null mutants was translocated to the male determining chromosome and this line can be used for genetic sexing. When larvae from this line were reared on larval medium containing various concentrations of allyl alcohol, 97% of the emerging adults were males; in the absence of the allyl alcohol the sex ratio in the line is distorted in favour of the females. It is proposed that the higher ADH activity of the females (homozygous positive) in comparison with the males (heterozygous null) is responsible for their lower survival in larval medium containing allyl alcohol. ADH converts the allyl alcohol to the lethal ketone. The possible use of this line to sex large populations of medflies for use in sterile insect release programmes is discussed.  相似文献   

7.
We have examined the role of alcohol dehydrogenase (ADH, E.C.1.1.1.1) in chilling tolerance using maize (Zea mays L.) Adh1(-)Adh2(-) doubly null mutant. Adh1(-)Adh2(-) doubly null seedlings were found to have lowered survival rates compared to non-doubly null maize seedlings (Silverado F(1)) when held at 2 degrees C for varying periods. Exposure to ethanol did not increase the chilling tolerance in either Silverado F(1) or Adh1(-)Adh2(-) doubly null. ADH activity in Silverado F(1) remained steady when held at 2 degrees C for up to 3 d. ADH1 protein accumulation in chilled Silverado F(1) seedlings remained unchanged throughout the period of cold exposure. Chilling led to a significant inhibition of the P-H(+)-ATPase (E.C. 3.6.3.6) activity in Adh1(-)Adh2(-)doubly null, but minimal inhibition was seen in Silverado F(1). Though P-H(+)-ATPase activity in Adh1(-)Adh2(-) decreased, P-H(+)-ATPase protein levels remained constant during the chilling period. Levels of ATP slightly fluctuated in both types of seedlings during the duration of chilling. Lipid peroxidation levels in Adh1(-)Adh2(-) doubly null increased with chilling exposure, but not in the Silverado F(1). We suggest that ADH activity may play a role in chilling tolerance that is not related to maintenance of glycolysis and ATP production as has been observed during oxygen depravation.  相似文献   

8.
In the fission yeast Schizosaccharomyces pombe, only one alcohol dehydrogenase gene, adh1(+), has been identified. To elucidate the influence of adh1(+) on ethanol fermentation, we constructed the adh1 null strain (delta adh1). The delta adh1 cells still produced ethanol and grew fermentatively as the wild-type cells. Both DNA microarray and RT-PCR analysis demonstrated that this ethanol production is caused by the enhanced expression of a Saccharomyces cerevisiae ADH4-like gene product (SPAC5H10.06C named adh4(+)). Since the strain lacking both adh1 and adh4 genes (delta adh1 delta adh4) showed non-fermentative retarded growth, only these two ADHs produce ethanol for fermentative growth. This is the first observation that a S. cerevisiae ADH4-like alcohol dehydrogenase functions in yeast ethanol fermentation.  相似文献   

9.
mRNA encoding alcohol dehydrogenase (ADH) increases in etiolated seedlings and leaves of Arabidopsis thaliana (L.) Heynh. upon exposure to low temperature. The analysis of this response after water stress and abscisic acid (ABA) treatments in Arabidopsis wild type and ABA-deficient and -insensitive mutants indicates that cold accumulation of ADH mRNA could be induced by both anaerobic metabolism and increase of ABA concentration resulting from low temperature exposure. By using one Arabidopsis ADH null mutant, we show that ADH activity is not required for successful development of freezing tolerance in this species.  相似文献   

10.
We injected single-stranded circular DNA containing a Drosophila Adh gene into ADH-negative embryos of Drosophila melanogaster and performed ADH histochemical staining on third instar larvae of the injected generation. Introduction of either the coding or non-coding strand resulted in correct tissue-specific expression of the Adh gene in larvae. Southern blotting revealed that the bulk of the injected DNA became double-stranded shortly after injection and was not integrated into the genome.  相似文献   

11.
The ability of class I alcohol dehydrogenase (ADH1) and class IV alcohol dehydrogenase (ADH4) to metabolize retinol to retinoic acid is supported by genetic studies in mice carrying Adh1 or Adh4 gene disruptions. To differentiate the physiological roles of ADH1 and ADH4 in retinoid metabolism we report here the generation of an Adh1/4 double null mutant mouse and its comparison to single null mutants. We demonstrate that loss of both ADH1 and ADH4 does not have additive effects, either for production of retinoic acid needed for development or for retinol turnover to minimize toxicity. During gestational vitamin A deficiency Adh4 and Adh1/4 mutants exhibit completely penetrant postnatal lethality by day 15 and day 24, respectively, while 60% of Adh1 mutants survive to adulthood similar to wild-type. Following administration of a 50-mg/kg dose of retinol to examine retinol turnover, Adh1 and Adh1/4 mutants exhibit similar 10-fold decreases in retinoic acid production, whereas Adh4 mutants have only a slight decrease. LD(50) studies indicate a large increase in acute retinol toxicity for Adh1 mutants, a small increase for Adh4 mutants, and an intermediate increase for Adh1/4 mutants. Chronic retinol supplementation during gestation resulted in 65% postnatal lethality in Adh1 mutants, whereas only approximately 5% for Adh1/4 and Adh4 mutants. These studies indicate that ADH1 provides considerable protection against vitamin A toxicity, whereas ADH4 promotes survival during vitamin A deficiency, thus demonstrating largely non-overlapping functions for these enzymes in retinoid metabolism.  相似文献   

12.
20-Carboxyeicosatetraenoic acid (20-COOH-AA) is a bioactive metabolite of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid that produces vasoconstriction in the cerebral circulation. We found that smooth muscle (MSMC) and endothelial (MEC) cultures obtained from mouse brain microvessels convert [3H]20-HETE to 20-COOH-AA, indicating that the cerebral vasculature can produce this metabolite. The [3H]20-COOH-AA accumulated primarily in the culture medium, together with additional radiolabeled metabolites identified as the chain-shortened dicarboxylic acids 18-COOH-18:4, 18-COOH-18:3, and 16-COOH-16:3. N-Heptylformamide, a potent inhibitor of alcohol dehydrogenase (ADH), decreased the conversion of [3H]20-HETE to 20-COOH-AA by the MSMC and MEC and also by isolated mouse brain microvessels. Purified mouse and human ADH4, human ADH3, and horse liver ADH1 efficiently oxidized 20-HETE, and ADH4 and ADH3 were detected in MSMC and MEC by Western blotting. N-Heptylformamide inhibited the oxidation of 20-HETE by mouse and human ADH4 but not by ADH3. These results demonstrated that cerebral microvessels convert 20-HETE to 20-COOH-AA and that ADH catalyzes the reaction. Although ADH4 and ADH3 are expressed in MSMC and MEC, the inhibition produced by N-heptylformamide suggests that ADH4 is primarily responsible for 20-COOH-AA formation in the cerebral microvasculature.  相似文献   

13.
The Saccharomyces cerevisiae nuclear gene, ADH3, that encodes the mitochondrial alcohol dehydrogenase isozyme ADH III was cloned by virtue of its nucleotide homology to ADH1 and ADH2. Both chromosomal and plasmid-encoded ADH III isozymes were repressed by glucose and migrated heterogeneously on nondenaturing gels. Nucleotide sequence analysis indicated 73 and 74% identity for ADH3 with ADH1 and ADH2, respectively. The amino acid identity between the predicted ADH III polypeptide and ADH I and ADH II was 79 and 80%, respectively. The open reading frame encoding ADH III has a highly basic 27-amino-acid amino-terminal extension relative to ADH I and ADH II. The nucleotide sequence of the presumed leader peptide has a high degree of identity with the untranslated leader regions of ADH1 and ADH2 mRNAs. A strain containing a null allele of ADH3 did not have a detectably altered phenotype. The cloned gene integrated at the ADH3 locus, indicating that this is the structural gene for ADH III.  相似文献   

14.
15.
Summary Data presented in this paper deal with a further molecular characterization of 2 out of 32 EMS-induced Arabidopsis ADH null mutants that we isolated previously. In order to localize and characterize each mutation at the molecular level, we have cloned and completely sequenced the R002 and R006 null mutant alleles. For mutant R002, which does not contain any detectable levels of ADH protein and mRNA, we have found that the mutation is due to a single C to T base pair substitution in the reading frame; this leads to the incorporation of a TAG stop codon (amber nonsense mutation). For mutant R006, which contains normal levels of inactive protein and mRNA levels, we found a G to A base pair transition. This gives rise to a Cys to Tyr amino acid substitution in the active site of the ADH enzyme.Abbreviations CRM cross-reacting material - 2,4-D 2,4-dichlorophenoxyacetic acid - EMS ethylmethanesulfonate  相似文献   

16.
The protein expressed by the alcohol dehydrogenase locus (Adh) in D. melanogaster comprises a small group of electromorphs. We are able to study the expression of these electromorphs by electrophoretic separation and subsequent probing of blots of the separated polypeptides with antiserum for alcohol dehydrogenase (ADH). In the present study we have utilized this technique to study and compare the ADH electromorphs in wild type D. melanogaster with D. melanogaster transformants which carry an Adh gene from D. grimshawi, D. hawaiiensis or D. affinidisjuncta and produced functional ADH (10, 19). We have determined that polypeptides are produced by the donor loci in the transformed flies and further show that although the molecular weight of the expressed polypeptides is similar to D. melanogaster electromorphs, the isoelectric points are not similar. Thus this methodology offers the potential to study naturally occurring ADH electromorphs and null alleles independent of enzymatic activity assays.  相似文献   

17.
Expression systems for the heterologous expression of Drosophila melanogaster alcohol dehydrogenase (ADH) in Saccharomyces cerevisiae have been designed, analyzed and compared. Four different yeast/Escherichia coli shuttle vectors were constructed and used to transform four different yeast strains. Expression was detectable in ADH- yeast strains, from either a constitutive promoter, yeast ADH1 promoter (ADCp), or a regulated promoter, yeast GALp. The highest amount of D. melanogaster ADH was obtained from a multicopy plasmid with the D. melanogaster Adh gene expressed constitutively under the control of yeast ADCp promoter. The D. melanogaster enzyme was produced in cell extracts, as assessed by Coomassie blue staining and Western blotting after polyacrylamide-gel electrophoresis and it was fully active and able to complement the yeast ADH deficiency. Results show that D. melanogaster ADH subunits synthesized in yeast are able to assemble into functional dimeric forms. The synthesized D. melanogaster ADH represents up to 3.5% of the total extracted yeast protein.  相似文献   

18.
We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.  相似文献   

19.
20.
Several mutants have been isolated at theArabidopsis thaliana (L.) Heynh. alcohol dehydrogenase (ADH) gene locus using allyl alcohol selection on ethyl methanesulfonate (EMS)-mutagenized seeds. Eleven mutants were isolated in theADH1-A electrophoretic allele, and 21 in theADH1-S allele. These null mutants are characterized by the absence of measurable ADH activity and genetic data showed that the mutations were confined to theADH1 gene locus ofArabidopsis. Eleven mutants in theADH1-A background were further characterized at the protein and mRNA level. These experiments revealed striking differences in the ADH protein and mRNA content. Some of the mutants did not synthesize any mRNA or ADH-like protein, whereas some of them had a nearly normal level of ADH protein and mRNA. Others had a very low level of both protein and mRNA. ADH null mutants differed physiologically from the wild type by their higher sensitivity to anaerobic treatment in plants and significantly reduced resistance to acetaldehyde in suspension cultures.This research was supported by the Geconcerteerde Onderzoeksactie, Grant 86/91–103, and the Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (IWONL), Grant 4972A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号