首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1‐lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion‐transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (a ntis ilencer/e nhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1‐lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli‐neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone‐induced (acute) demyelination. Thus, it is possible that the ASE is non‐functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene.  相似文献   

2.
3.
4.
We show that the expression of the gene encoding glial fibrillary acidic protein (GFAP) gene is affected by at least three cis-acting elements. A positive regulatory element that is located between nucleotides -1,631 and -1,479 can confer cell type-specific expression on a heterologous gene. A second regulatory element is located between nucleotides -97 and -80. The third is a negative regulatory element that is located within the first intron of the gene. Deletion of this element activates GFAP expression in HeLa cells, and affects promoter function in glioma cells.  相似文献   

5.
6.
Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin.  相似文献   

7.
8.
Using a phylogenetic approach, we identified highly conserved sequences within intron 3 of the human TNF-alpha gene. These sequences form cell type-specific DNase I hypersensitivity sites and display cell type-specific DNA-protein contacts in in vivo genomic footprints. Consistent with these results, intron 3 confers specific activity upon a TNF-alpha reporter gene in Jurkat T cells, but not THP-1 monocytic cells. Thus, using a combinatorial approach of phylogenetic analysis, DNase I hypersensitivity analysis, in vivo footprinting, and transfection analysis, we demonstrate that intronic regulatory elements are involved in the cell type-specific regulation of TNF-alpha gene expression.  相似文献   

9.
10.
Opsin genes are expressed in a cell type-specific manner in the retina and the pineal organ for visual and nonvisual photoreceptive purposes, but the regulatory mechanism behind the tissue and cell selectivity is not well understood. In this study, we focus on the expression regulation of the blue-sensitive opsin gene SWS2 of zebrafish by taking a transgenic approach using the green fluorescence protein as an expression reporter. The zebrafish SWS2 is a single-copy gene and is expressed specifically in the "long single cones" in the retina. We found the following. 1) A 0.3-kb region between 0.6 and 0.3 kb 5' of the SWS2 initiation codon, encompassing four cone-rod homeobox-binding sites (OTX sequences), contains the region necessary and sufficient to drive gene expression in long single cones. 2) A 15-bp portion (-341 to -327) in the 0.3-kb region represses the gene expression in the "short single cones," which are dedicated to the UV-sensitive opsin gene SWS1. 3) An 11-bp sequence TAACTGCCAGT (-441 to -431) in the 0.3-kb region, with its adjacent OTX element, also works as a repressor for gene expression in the pineal cells. 4) Finally, this OTX site is necessary for expression repression in the bipolar cells in the retina. These findings open a way for understanding the complex interaction of positive and negative regulatory factors that govern the cell type specificity of the opsin gene expression in the photoreceptive cells in the retina and the pineal organ. We termed the novel 11-bp sequence as the pineal negative regulatory element, PINE.  相似文献   

11.
12.
13.
Elements controlling high expression of the 17-1A antigen gene in pancreatic carcinoma cells (Capan 2) reside within the two regions: proximal (?193 to +3) and distal (?877 to ?518). We demonstrate here that some factors present in nuclear extracts from nonexpressing cells bind specifically to the control elements, important for gene expression. Our results suggest that nonexpressing cells may either lack at least one of the factors necessary for activation or may contain their modified forms. A major difference between expressing and nonexpressing cells was found in the region containing core enhancer sequence. Moreover, nonexpressing cells display a complex pattern of DNA-protein interactions in this region, suggesting that these cells contain factors acting negatively mainly on the enhancer sequence. Our results however, indicate that the mechanism of repression is much more complicated than expected.  相似文献   

14.
The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled. Misregulation of the gene in humans can result in the dysmyelinating disorder Pelizaeus-Merzbacher disease, and in transgenic mice carrying a null mutation or extra copies of the gene can result in a variety of conditions, from late onset demyelination and axonopathy, to severe early onset dysmyelination. In this study we have examined the effects of Plp intron 1 DNA in mediating proper developmental expression of Plp-lacZ fusion genes in transgenic mice. Our results reveal the importance of Plp intron 1 sequences in instigating the expected surge in Plp-lacZ gene activity during (and following) the active myelination period of brain development. Transgene expression was also detected in the testis (Leydig cells), however, the presence or absence of Plp intron 1 sequences had no effect on the temporal profile in the testis. Surprisingly, expression of the transgene missing Plp intron 1 DNA was always higher in the testis, as compared to the brain, in all of the transgenic lines generated.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号