首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A study of the catalysis of the formation of the glucuronides of o-aminophenol and p-nitrophenol by the uridine diphosphate transglucuronylase of homogenates of female mouse liver has been made, with reference to the effect of reagents reacting with thiol groups. 2. The synthesis of both glucuronides was completely inhibited by organic mercurials and N-ethylmaleimide. The inhibition was only partial with arsenite and the arsenoxides, iodoacetamide and o-iodosobenzoate. 3. The o-aminophenol system was much more sensitive than that for p-nitrophenol to all the thiol reagents, except N-ethylmaleimide, which was equally active in both systems. 4. At very low concentrations of the organic mercurials, the o-aminophenol system was activated. 5. With o-aminophenyl glucuronide formation, complete protection was given by glutathione and cysteine against the organic mercurials, N-ethylmaleimide and iodoacetamide, and partial protection against the arsenicals. Reversal was complete against the mercurials, and very limited against the arsenicals and iodoacetamide. The effects of N-ethylmaleimide and o-iodosobenzoate were irreversible. Results with p-nitrophenol were very similar. 6. Uridine diphosphate transglucuronylase was partially protected against p-chloromercuribenzoate and lewisite oxide by uridine diphosphate glucuronate, but not by o-aminophenol. 7. Glutathione did not prevent the decline in the rate of conjugation of o-aminophenol when homogenates were aged by incubation at 30°. Cysteine was unable to prevent or reverse inactivation by ultrasonic radiation.  相似文献   

2.
3.
The synthesis of UDP-glucose-6-s-H was performed through condensation of alpha-D-glucopyranosyl phosphate-6-3-H and uridine 5'-phosphomorpholidate. Enzymic oxidation of UDP-glucose-6-3-H with calf liver UDP-glucose dehydrogenase was found to proceed with direct transfer of the hydrogen from C-6 of UDP-glucose onto NAD.  相似文献   

4.
5.
Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.  相似文献   

6.
7.
1. Digitonin-treated and untreated homogenates, cell extracts and washed microsomal preparations from liver of Wistar R rats are capable of transferring sugar from UDP-glucose or UDP-xylose to bilirubin. No formation of bilirubin glycosides occurred with UDP-galactose or d-glucose, d-xylose or d-glucuronic acid as the sources of sugar. 2. Procedures to assay digitonin-activated and unactivated bilirubin UDP-glucosyltransferase and bilirubin UDP-xylosyltransferase were developed. 3. In digitonin-activated microsomal preparations the transferring enzymes had the following properties. Both enzyme activities were increased 2.5-fold by pretreatment with digitonin. They were optimum at pH6.6–7.2. Michaelis–Menten kinetics were followed with respect to UDP-glucose. In contrast, double-reciprocal plots of enzyme activity against the concentration of UDP-xylose showed two intersecting straight-line sections corresponding to concentration ranges where either bilirubin monoxyloside was formed (at low UDP-xylose concentrations) or where mixtures of both the mono- and di-xyloside were synthesized (at high UDP-xylose concentrations). Both enzyme activities were stimulated by Mg2+; Ca2+ was slightly less, and Mn2+ slightly more, stimulatory than Mg2+. Of the activities found in standard assay systems containing Mg2+, 58–78% (substrate UDP-glucose) and 0–38% (substrate UDP-xylose) were independent of added bivalent metal ion. Double-reciprocal plots of the Mg2+-dependent activities against the concentration of added Mg2+ were linear. 4. In comparative experiments the relative activities of liver homogenates obtained with UDP-glucuronic acid, UDP-glucose and UDP-xylose were 1:1.5:2.7 for untreated preparations and 1:0.29:0.44 after activation with digitonin. 5. Bilirubin UDP-glucuronyltransferase was protected against denaturation by human serum albumin, whereas bilirubin UDP-xylosyltransferase was not. 6. Digitonin-treated and untreated liver homogenates from Gunn rats were inactive in transferring sugar to bilirubin from UDP-glucuronic acid (in agreement with the work of others), UDP-glucose or UDP-xylose.  相似文献   

8.
9.
10.
The glucuronic acid adducts of 1-naphthol, 2-naphthol and 4-methylumbelliferone activate microsomal UDP-glucuronyltransferase (EC 2.4.1.17) when the enzyme is assayed with p-nitrophenol as aglycone. Phenyl glucuronide and oestriol 3beta-glucuronide also activate UDP-glucuronyltransferase. but to a lesser extent. Activation by glucuronides is not dependent on metal ions, but is blocked by prior treatment of microsomal fractions with p-chloromercuribenzoate. The kinetic mechanism of activation is concluded to be an increase in the affinity of the enzyme for UDP-glucuronic acid. Activation by 1-naphthyl glucuronide, at high concentrations of p-nitrophenol, is not affected by 1-naphthol. Apparently 1-naphthyl glucuronide activates the preparation by binding at a site that is separate from the site of glucuronidation of 1-naphthol. Further evidence for the existence of distinct effector sites for the glucuronides was provided by the finding that activation by glucuronides is inhibited competitively by aglycone glucosides. These glucosides do not inhibit the rate of glucuronidation of p-nitrophenol in the absence of glucuronide adducts, nor do they alter the rate of glucuronidation of 1-naphthol. When UDP-glucuronyltransferase is assayed with 1-naphthol as aglycone it is activated by p-nitrophenyl glucuronide, 4-methyl-umbelliferyl glucuronide and under appropriate conditions by its own glucuronide. These activations are similarly inhibited by aglycone glucosides. p-Nitrophenyl glucuronide also stimulates the rate of glucuronidation of o-aminophenol, o-aminobenzoate and bilirubin.  相似文献   

11.
1. Lactose synthetase activity in the rat mammary gland increases during the last day of pregnancy from an essentially zero value. There is a parallel increase of tissue lactose and of glucose 6-phosphate dehydrogenase activity. 2. Mammary-gland homogenates prepared both before and after parturition hydrolyse the lactose precursors glucose 6-phosphate, glucose 1-phosphate, UDP-glucose, UDP-galactose and also maltose, but not lactose. 3. A role of lactose synthetase as the rate-limiting enzyme for lactose biosynthesis and the possible significance of the hydrolytic activities are discussed with respect to lactogenesis.  相似文献   

12.
13.
14.
15.
16.
17.
Glucuronidation of oestrone and of oestradiol in microsomal fractions was markedly and significantly stimulated by UDP-N-acetylglucosamine and by ultrasonication: Triton X-100 also stimulated. This is consistent with compartmentation of UDP-glucuronyl-transferase. Stimulation by UDP-N-acetylglucosamine may be physiologically significant.  相似文献   

18.
Calcium phosphate-boric acid treatments and UDP-glucose both elicited aniline blue fluorescent, periodic acid-Schiff's reagent-resistant, deposits in association with the cell walls of cowpea (Vigna sinensis [Torner] Savi cv. Early Ramshorn) tissue. Those deposits induced by calcium phosphateboric acid treatment ultrastructurally resembled the “wound callose” commonly triggered by cell damage; they were formed in seemingly intact cells of stems and leaves and their formation was associated with an increase in the surface density of rough endoplasmic reticulum in the cell cytoplasm. In contrast, UDP-glucose induced a more rapid accumulation of aniline blue fluorescent material, but only at the cut edges of stem slices. Comparative light and electron microscopy indicated that the material was incorporated into the walls of the damaged cells, even when such cells were devoid of organized cytoplasm. These results indicate a difference in the mode and site of synthesis between wound callose and that elicited by exogenous UDP-glucose. They support the hypothesis that externally supplied UDP-glucose cannot be utilized by intact cells.  相似文献   

19.
20.
1. Rabbit liver microsomes were subfractionated into rough- and smooth-surfaced types, and glucuronyltransferase activity in each microsomal subfraction was determined with p-nitrophenol, o-aminophenol and phenolphthalein as substrates. The glucuronyltransferase activity measured with p-nitrophenol and o-aminophenol as substrates was localized predominantly in rough-surfaced microsomes. Glucuronyltransferase measured with phenolphthalein as substrate was equally present in rough- and smooth-surfaced microsomes. 2. Phenobarbital pretreatment of rabbits did not stimulate any of the glucuronyltransferase activities measured in either rough- or smooth-surfaced microsomes. 3. Preincubation of rabbit liver microsomes for 30-60min. at 37 degrees under oxygen did not cause any loss of glucuronyltransferase activity. Such preincubation caused either no change or increased enzyme activity in both submicrosomal fractions. The relative distribution of transferase activity in rough- and smooth-surfaced microsomes was not affected by preincubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号