首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The virucidal effect of peppermint oil, the essential oil of Mentha piperita, against herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of peppermint oil for herpes simplex virus plaque formation was determined at 0.002% and 0.0008% for HSV-1 and HSV-2, respectively. Peppermint oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of the oil, plaque formation was significantly reduced by 82% and 92% for HSV-1 and HSV-2, respectively. Higher concentrations of peppermint oil reduced viral titers of both herpesviruses by more than 90%. A clearly time-dependent activity could be demonstrated, after 3 h of incubation of herpes simplex virus with peppermint oil an antiviral activity of about 99% could be demonstrated. In order to determine the mode of antiviral action of the essential oil, peppermint oil was added at different times to the cells or viruses during infection. Both herpesviruses were significantly inhibited when herpes simplex virus was pretreated with the essential oil prior to adsorption. These results indicate that peppermint oil affected the virus before adsorption, but not after penetration into the host cell. Thus this essential oil is capable to exert a direct virucidal effect on HSV. Peppermint oil is also active against an acyclovir resistant strain of HSV-1 (HSV-1-ACV(res)), plaque formation was significantly reduced by 99%. Considering the lipophilic nature of the oil which enables it to penetrate the skin, peppermint oil might be suitable for topical therapeutic use as virucidal agent in recurrent herpes infection.  相似文献   

2.
Brazilian plants are potential sources of useful edible and medicinal plants. Hydromethanolic extracts prepared from 54 medicinal plants used in folk medicine to treat infections were screened for antiviral properties against five different viruses (HSV-1, HSV-2, poliovirus type 2, adenovirus type 2 and VSV). Fifty-two percent of the plant extracts exhibited antiviral against one or more tested viruses. More specifically, 42.6% showed activity against HSV-1 (herpes simplex virus type 1), 42.6% against HSV-2 (herpes simplex virus type 2), 26% against poliovirus and 24% against VSV (vesicular stomatitis virus). None of the extracts was active against adenovirus. Trixis praestans (Vell.) Cabr. and Cunila spicata Benth. extracts were further characterized for antiviral activity.  相似文献   

3.
The rhamnolipid biosurfactant PS-17 and its complex with the polysaccharide alginate, both produced by the Pseudomonas sp. S-17 strain, were studied for their antiviral activity against herpes simplex virus (HSV) types 1 and 2. They significantly inhibited the herpesvirus cytopathic effect (CPE) in the Madin-Darby bovine kidney (MDBK) cell line. The investigations were carried out according to the CPE inhibition assay protocol. The suppressive effect of the compounds on HSV replication was dose-dependent and occurred at concentrations lower than the critical micelle concentration of the surfactant. The 50% inhibitory concentration (IC50) of rhamnolipid PS-17 was 14.5 microg/ml against HSV-1 and 13 microg/ml against HSV-2. The IC50 values of the complex were 435 microg/ml for HSV-1 and 482 microg/ml for HSV-2. The inhibitory effects of the substances were confirmed by measuring the infectious virus yields with the multicycle virus growth experimental design as well: deltalog CCID50 of 1.84-2.0 against the two types of herpes simplex viruses by rhamnolipid PS-17 (20 microg/ml), and a strong reduction of the HSV-2 virus yield under the effect of the alginate complex at a concentration of 450 microg/ml. The results indicate that rhamnolipid PS-17 and its alginate complex may be considered as promising substances for the development of anti-herpetic compounds.  相似文献   

4.
The antiviral effects of selected combinations between acemannan (ACE-M), a long-chained, polydispersed, beta-(1,4)-acetylated mannan, were tested in combination with azidothymidine (AZT) and acyclovir (ACY) in vitro. The rationale for such combinations was based on the antiviral and immunomodulatory properties exhibited by ACE-M. In addition, the observed antiviral effects of ACE-M against human immunodeficiency virus type 1 (HIV-1) and other enveloped viruses appear to be related to modification of the glycosylation of viral glycoproteins. Therefore, the inhibitory effect of ACE-M does not overlap with that of AZT or ACY. The studies presented herein show that ACE-M combined with suboptimal noncytotoxic concentrations of AZT or ACY act synergistically to inhibit the replication of HIV-1 and herpes simplex virus type 1 (HSV-1), respectively. The median effect method was not applicable for analysis because the test compounds show mutually nonexclusive drug effects. For a meaningful evaluation and interpretation of the effects of drug combinations, the biological significance of combinations must be considered, that is, the protective effect of the combination, the noncytotoxicity of the combination, the mechanism(s) of action of the individual compounds comprising the combination, and so forth. With respect to effects on U1 cells latently infected with HIV-1, treatment with combinations of AZT and ACE-M does not potentiate virus replication.  相似文献   

5.
Inhibitory effect of essential oils against herpes simplex virus type 2.   总被引:2,自引:0,他引:2  
Essential oils from anise, hyssop, thyme, ginger, camomile and sandalwood were screened for their inhibitory effect against herpes simplex virus type 2 (HSV-2) in vitro on RC-37 cells using a plaque reduction assay. Genital herpes is a chronic, persistent infection spreading efficiently and silently as sexually transmitted disease through the population. Antiviral agents currently applied for the treatment of herpesvirus infections include acyclovir and its derivatives. The inhibitory concentrations (IC50) were determined at 0.016%, 0.0075%, 0.007%, 0.004%, 0.003% and 0.0015% for anise oil, hyssop oil, thyme oil, ginger oil, camomile oil and sandalwood oil, respectively. A clearly dose-dependent virucidal activity against HSV-2 could be demonstrated for all essential oils tested. In order to determine the mode of the inhibitory effect, essential oils were added at different stages during the viral infection cycle. At maximum noncytotoxic concentrations of the essential oils, plaque formation was significantly reduced by more than 90% when HSV-2 was preincubated with hyssop oil, thyme oil or ginger oil. However, no inhibitory effect could be observed when the essential oils were added to the cells prior to infection with HSV-2 or after the adsorption period. These results indicate that essential oils affected HSV-2 mainly before adsorption probably by interacting with the viral envelope. Camomile oil exhibited a high selectivity index and seems to be a promising candidate for topical therapeutic application as virucidal agents for treatment of herpes genitalis.  相似文献   

6.
Pharmacological cyclin-dependent kinase (cdk) inhibitors (PCIs) block replication of several viruses, including herpes simplex virus type 1 (HSV-1) and human immunodeficiency virus type 1 (HIV-1). Yet, these antiviral effects could result from inhibition of either cellular cdks or viral enzymes. For example, in addition to cellular cdks, PCIs could inhibit any of the herpesvirus-encoded kinases, DNA replication proteins, or proteins involved in nucleotide metabolism. To address this issue, we asked whether purine-derived PCIs (P-PCIs) inhibit HSV and HIV-1 replication by targeting cellular or viral proteins. P-PCIs inhibited replication of HSV-1 and -2 and HIV-1, which require cellular cdks to replicate, but not vaccinia virus or lymphocytic choriomeningitis virus, which are not known to require cdks to replicate. P-PCIs also inhibited strains of HSV-1 and HIV-1 that are resistant to conventional antiviral drugs, which target viral proteins. In addition, the anti-HSV effects of P-PCIs and a conventional antiherpesvirus drug, acyclovir, were additive, demonstrating that the two drugs act by distinct mechanisms. Lastly, the spectrum of proteins that bound to P-PCIs in extracts of mock- and HSV-infected cells was the same. Based on these observations, we conclude that P-PCIs inhibit virus replication by targeting cellular, not viral, proteins.  相似文献   

7.
The 2',3'-dideoxyriboside (ddDAPR), 2',3'-didehydro-2',3'-dideoxyriboside (ddeDAPR) and 3'-azido-2',3'-dideoxyriboside (AzddDAPR) of 2,6-diaminopurine have been previously recognized as potent inhibitors of human immunodeficiency virus replication. These compounds are also potent inhibitors of adenosine deaminase and inhibit the deamination of 9-beta-D-arabinofuranosyladenine (araA). ddDAPR, ddeDAPR and AzddDAPR markedly potentiate the antiviral activity of araA against herpes simplex virus type 1 (HSV-1), type 2 (HSV-2) and vaccinia virus (VV). When used at a concentration of 20 micrograms/ml, which had by itself no antiviral effect, ddDAPR, ddeDAPR and AzddDAPR increased the ability of araA to suppress HSV-1, HSV-2 and VV yield by several orders of magnitude. The maximum antiviral effect was obtained with the combinations of ddDAPR or ddeDAPR with araA concentrations of 1 and 10 micrograms/ml.  相似文献   

8.
When rabbit kidney cells were infected with herpes simplex virus type 1 (strain Seibert) or herpes simplex virus type 2 (strain 316D), deoxycytidine kinase (CdR kinase) activity, assayed at 38 degrees, increased 5- to 15-fold relative to controls. The CdR kinase activity induced by type 2 virus was more thermolabile than the enzyme activity induced by type 1 virus. When CdR kinase activity was assayed at various temperatures between 0.5 and 38 degrees, maximum activity for type 1 enzyme was obtained at 16 degrees while maximum activities for host and type 2 enzymes were obtained at 38 degrees. Both type 1 and type 2 induced CdR kinase activities eluted at the same positions as deoxythymidine kinase activities on a Sephadex G-100 column. The estimated mol wt for HSV-1 (Seibert) and HSV-2 (316D) induced CdR kinases are 67,000 and 60,000, respectively.  相似文献   

9.
The interferon-inducible membrane protein tetherin (Bst-2, or CD317) is an antiviral factor that inhibits enveloped virus release by cross-linking newly formed virus particles to the producing cell. The majority of viruses that are sensitive to tetherin restriction appear to be those that acquire their envelopes at the plasma membrane, although many viruses, including herpesviruses, envelope at intracellular membranes, and the effect of tetherin on such viruses has been less well studied. We investigated the tetherin sensitivity and possible countermeasures of herpes simplex virus 1 (HSV-1). We found that overexpression of tetherin inhibits HSV-1 release and that HSV-1 efficiently depletes tetherin from infected cells. We further show that the virion host shutoff protein (Vhs) is important for depletion of tetherin mRNA and protein and that removal of tetherin compensates for defects in replication and release of a Vhs-null virus. Vhs is known to be important for HSV-1 to evade the innate immune response in vivo. Taken together, our data suggest that tetherin has antiviral activity toward HSV-1 and that the removal of tetherin by Vhs is important for the efficient replication and dissemination of HSV-1.  相似文献   

10.
Six water-insoluble fractions of fungal beta-glucans extracted by hot alkali (TM8-1 to TM8-6) from the sclerotia of Pleurotus tuber-regium (PTR) having different molecular weights (M(w)) were sulfated to give their corresponding water-soluble derivatives (S-TM8-1 to S-TM8-6) with the degree of sulfation (DS) ranging from 1.14 to 1.74. The in vitro anti-viral activities of the native beta-glucans (TM8s) and their sulfated derivatives (S-TM8s) were evaluated by the cytopathic effect assay (CPE) and the plaque reduction assay (PRA) against four kinds of viruses, including herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), respiratory syncytial virus (RSV), and influenza A virus (Flu A). Although TM8s were inactive in inhibiting the viral replication in cell cultures, the S-TM8 fractions with the defined M(w) range had potent anti-viral activity against HSV-1 and HSV-2 as shown by the CPE assay. The PRA results suggested that S-TM8 fractions seemed to exert their anti-viral effect by binding to the viral particles, preventing the latter from infecting the host cells. It was plausible that the negative charges on the polymer chain of S-TM8 could interact with the positively charged glycoproteins on the surface of HSV, minimizing the interaction between the HSV and the negatively charged host cells. The anti-viral activity of the S-TM8s might also be explained by their more extended chain conformation in solution due to an increase in one of their molecular parameter, persistence length (q), as compared to the native TM8s. The potential use of S-TM8s as a water-soluble anti-HSV agent is discussed.  相似文献   

11.
A sulfated polysaccharide, designated HC-b1, was isolated from the brown seaweed Hydroclathrus clathratus. It was found to be a strong inhibitor of herpes simplex virus type 1 (HSV-1), including acyclovir-resistant strain and clinical strain. HC-b1 inhibited the plaque formation of HSV-1 in a dose-dependent manner. It could protect Vero cells from infection by HSV-1 if the cells were incubated with HC-b1 before exposure to the virus. It also had inactivating effect against HSV-1 since the pretreatment of the virus with HC-b1 caused significant reduction of viral infectivity. Time of addition studies demonstrated that HC-b1 exerted its antiviral action at the early stage of virus replication cycle. The presence of HC-b1 could not effectively inhibit the replication of HSV-1 about 45 min after the penetration period started. The antiviral action of HC-b1 appeared to inhibit the attachment of herpes simplex virus on host cell membrane through interfering with the processes of adsorption and penetration.  相似文献   

12.
13.
3'-NH2-BV-dUrd, the 3'-amino derivative of (E)-5-(2-bromovinyl)-2'-deoxyuridine, was found to be a potent and selective inhibitor of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) replication. 3'-NH2-BV-dUrd was about 4-12 times less potent but equally selective in its anti-herpes activity as BV-dUrd. Akin to BV-dUrd, 3'-NH2-BV-dUrd was much less inhibitory to herpes simplex virus type 2 than type 1. It was totally inactive against a thymidine kinase-deficient mutant of HSV-1. The 5'-triphosphate of 3'-NH2-BV-dUrd (3'-NH2-BV-dUTP) was evaluated for its inhibitory effects on purified herpes viral and cellular DNA polymerases. Among the DNA polymerases tested, HSV-1 DNA polymerase and DNA polymerase alpha were the most sensitive to inhibition by 3'-NH2-BV-dUTP (Ki values 0.13 and 0.10 microM, respectively). The Km/Ki ratio for DNA polymerase alpha was 47, as compared with 4.6 for HSV-1 DNA polymerase. Thus, the selectivity of 3'-NH2-BV-dUrd as an anti-herpes agent cannot be ascribed to a discriminative effect of its 5'-triphosphate at the DNA polymerase level. This selectivity most probably resides at the thymidine kinase level. 3'-NH2-BV-dUrd would be phosphorylated preferentially by the HSV-1-induced thymidine kinase (Ki 1.9 microM, as compared with greater than 200 microM for the cellular thymidine kinase), and this preferential phosphorylation would confine the further action of the compound to the virus-infected cell.  相似文献   

14.
Both methyglyoxal bis(guanylhydrazone), an inhibitor of S-adenosyl-L-methionine decarboxylase (EC.4.1.1.50) and DL-α-methylornithine, an inhibitor of ornithine decarboxylase (EC.4.1.1.17), are shown to be potent inhibitors of the replication of human cytomegalovirus (HCMV) in MRC-5 cells. These compounds, both inhibitors of polyamine biosynthesis, do not affect the replication of either herpes simplex virus type 1 (HSV-1) or herpes simplex virus type 2 (HSV-2). This difference in antiviral effect is shown to be related to the stimulation of spermidine and spermine synthesis in host cells following HCMV infection and the inhibition of polyamine metabolism in HSV-1 or HSV-2-infected cells. Inhibition of HCMV replication by the inhibitors of polyamine biosynthesis is accompanied by a marked decrease in the formation of intranuclear, DNA-containing inclusions characteristic of HCMV infection. These results suggest significant differences in the mechanisms of replication of different herpesviruses.  相似文献   

15.
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inhibits the replication of both human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1). The mechanism of inhibition is not clear. This investigation explored the effects of TCS on the stages of HSV-1 infection in Hep-2 cells, from attachment to release. We demonstrated that TCS reduced HSV-1 antigen and DNA content and interfered with viral replication as early as 3-15 h after infection. TCS had no effect on HSV-1 attachment, penetration or immediate-early gene expression. However, the expression of early and late genes and virion release were diminished. In summary, this study demonstrates that TCS primarily affects HSV-1 replication in Hep-2 cells during the early to late infection period.  相似文献   

16.
Herpes simplex virus resistance and sensitivity to phosphonoacetic acid.   总被引:29,自引:19,他引:10       下载免费PDF全文
Phosphonoacetic acid (PAA) inhibited the synthesis of herpes simplex virus DNA in infected cells and the activity of the virus-specific DNA polymerase in vitro. In the presence of concentrations of PAA sufficient to prevent virus growth and virus DNA synthesis, normal amounts of early virus proteins (alpha- and beta-groups) were made, but late virus proteins (gamma-group) were reduced to less than 15% of amounts made in untreated infected cells. This residual PAA-insensitive synthesis of gamma-polypeptides occurred early in the virus growth cycle when rates were identical in PAA-treated and untreated infected cells. Passage of virus in the presence of PAA resulted in selection of mutants resistant to the drug. Stable clones of mutant viruses with a range of drug sensitivities were isolated and the emergence of variants resistant to high concentrations of PAA involved the sequential selection of mutants progressively better adapted to growth in the presence of the drug. Increased drug resistance of virus yield or plaque formation was correlated with increased resistance of virus DNA synthesis, gamma-protein synthesis, and resistance of the virus DNA polymerase reaction in vitro to the inhibitory effects of the drug. PAA-resistant strains of herpes simplex virus type 1 (HSV-1) complemented the growth of sensitive strains of homologous and heterologous types in mixed infections in the presence of the drug. Complementation was markedly dependent upon the proportions of the resistant and sensitive partners participating in the mixed infection. Intratypic (HSV-1A X HSV-1B) recombination of the PAA resistance marker(s), Pr, occurred at high frequency relative to plaque morphology (syn) and bromodeoxyuridine resistance (Br, thymidine kinase-negative phenotype) markers, with the most likely order being syn-Br-Pr. Recombinant viruses were as resistant or sensitive to PAA as the parental viruses, and viruses recombinant for their PAA resistance phenotype were also recombinant for the PAA resistance character of the virus DNA polymerase. The results provide additional evidence that the herpesvirus DNA polymerase is the site of action of PAA and illustrate the potential usefulness of PAA-resistant mutants in genetic studies of herpesviruses.  相似文献   

17.
18.
We studied the synthesis and processing of the type-common glycoprotein gD in herpes simplex virus type 2 (HSV-2) and compared it structurally to glycoprotein gD of herpes simplex virus type 1 (HSV-1). We demonstrated that in HSV-2, gD undergoes posttranslational processing from a lower-molecular-weight precursor (pgD51) to a higher-molecular-weight product (gD56). Tryptic peptide analysis by cation-exchange chromatography indicated that this processing step altered neither the methionine nor the arginine tryptic peptide profile of gD of HSV-2. Comparative tryptic peptide analysis of gD of HSV-1 and HSV-2 showed that the methionine and arginine tryptic peptide profiles of these two proteins were very similar, but not identical. Some of the resolved peptides coeluted from the cation-exchange column, suggesting that some amino acid sequences of the two proteins might be very similar. However, each protein also appeared to possess several type-specific tryptic peptides. The structural similarity of these two glycoproteins correlates well with their antigenic cross-reactivity since monoprecipitin antibody to gD of HSV-1 also immunoprecipitates gD of HSV-2 and neutralizes the infectivity of both viruses to approximately the same extent.  相似文献   

19.
Replication-defective mutants of herpes simplex virus type 1 (HSV-1) were used as a new means to immunize mice against HSV-1-mediated ocular infection and disease. The effects of the induced immune responses on pathogenesis of acute and latent infection by challenge virus were investigated after corneal inoculation of immunized mice with virulent HSV-1. A single subcutaneous injection of replication-defective mutant virus protected mice against development of encephalitis and keratitis. Replication of the challenge virus at the initial site of infection was lower in mice immunized with attenuated, wild-type parental virus (KOS1.1) or replication-defective mutant virus than in mice immunized with uninfected cell extract or UV-inactivated wild-type virus. Significantly, latent infection in the trigeminal ganglia was reduced in mice given one immunization with replication-defective mutant virus and was completely prevented by two immunizations. Acute replication in the trigeminal ganglia was also prevented in mice immunized twice with wild-type or mutant virus. The level of protection against infection and disease generated by immunization with replication-defective mutant viruses was comparable to that of infectious wild-type virus in all cases. In addition, T-cell proliferative and neutralizing antibody responses following immunization and corneal challenge were of similar strength in mice immunized with replication-defective mutant viruses or with wild-type virus. Thus, protein expression by forms of HSV-1 capable of only partially completing the replication cycle can induce an immune response in mice that efficiently decreases primary replication of virulent challenge virus, interferes with acute and latent infection of the nervous system, and inhibits the development of both keratitis and systemic neurologic disease.  相似文献   

20.
R Duff  F Rapp 《Journal of virology》1975,15(3):490-496
The interaction of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) with Swiss/3T3 cells was investigated. Virus-induced cytopathic effects developed in the absence of production of infectious virus. HSV-2 inactivated with UV light (2, 4, 6, and 8 min) also induced cell death in the absence of virus replication. Cell death was not detectable after infection by HSV-2 that had been inactivated by UV irradiation for 10, 12, and 14 min. 3T3 cells infected with UV-inactivated virus (10 and 12 min) continued to replicate past the contact-inhibited monolayer normally associated with these cells. Infection of 3T3 cells with UV-irradiated USV-2 also induced the development of transformed foci. Transformed cells with an epithelioid of fibroblastoid morphology were identified and isolated. All HSV-2-transformed cell lines contained HSV-2-specific antigens detectable by immunofluorescence techniques. The maximum frequency of HSV-2-induced transformation was 3 times 105 PFU per transformed focus, and the observed transformation could be inhibited by pretreatment of the virus with specific antiserum. No type C particles were detected within five cell culture passages after transformation by HSV-2. Type C virus particles were detected after 10 cell culture passages of the HSV-2-transformed cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号