首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the resonance light scattering (RLS) spectra of chlorophyll a aggregated in a 9:1 solution of formamide and pH 6.8 phosphate buffer. The aggregate formed after 2 h of mixing, referred to as Chl469, shows a strong scattering feature at 469 nm (Soret band) and a much weaker feature at 699 nm (Qy band). A kinetic investigation confirmed that the aggregation process is cooperative, and also detected one intermediate (Chl458) with a strong RLS spectrum but only a weak CD spectrum. We propose that aggregation proceeds via at least three steps: 1) formation of a nucleating species, probably a dimer of chlorophylls; 2) formation of large aggregates with little or no secondary structure (e.g., Chl458); and 3) conformational change to form helical aggregate (Chl469).  相似文献   

2.
Assemblies of trans-bis(N-methylpyridinium-4-yl)diphenylporphine ions on the surface of calf thymus DNA have been studied using several spectroscopic techniques: absorbance, circular dichroism, and resonance light scattering. The aggregation equilibrium can be treated as a two-state system-monomer and assembly-each bound to the nucleic acid template. The aggregate absorption spectrum in the Soret region is resolved into two bands of Lorentzian line shape, while the DNA-bound monomer spectrum in this region is composed of two Gaussian bands. The Beer-Lambert law is obeyed by both porphyrin forms. The assembly is also characterized by an extremely large, bisignate induced circular dichroism (CD) profile and by enhanced resonance light scattering (RLS). Both the CD and RLS intensities depend linearly on aggregate concentration. The RLS result is consistent with a model for the aggregates as being either of a characteristic size or of a fixed distribution of sizes, independent of total porphyrin concentration or ionic strength. Above threshold values of concentration and ionic strength, the mass action expression for the equilibrium has a particularly simple form: K' = cac-1; where cac is defined as the "critical assembly concentration."offe dependence of the cac upon temperature and ionic strength (NaCl) has been investigated at a fixed DNA concentration. The value of the cac scales as the inverse square of the sodium chloride concentration and, from temperature dependence studies, the aggregation process is shown to be exothermic.  相似文献   

3.
Resonance light scattering (RLS), a phenomenon of abrupt enhancement of Rayleigh light scattering in close proximity to an absorption band, is easily detectable in solutions of strongly absorbing chromophores, which form large aggregates with strong π-electronic coupling among the chromophores. RLS spectra need to be corrected for the sensitivity of the spectrofluorimeter as well as for the effects of internal light filter. A method for correcting the measured RLS is described. It was shown by the method that addition of KCl induces formation of extended supramolecular aggregates (probably of H-type) of the anionic dye merocyanine 540 in water. The RLS spectra of a photosensitizer m-tetra(hydroxyphenyl)chlorin (Foscan®) indicate formation of J-aggregates of this dye in aqueous medium.  相似文献   

4.
HAuCl4 was reduced by sodium citrate to prepare 10 nm gold nanoparticles (AuNPs) that were modified by the bisphenol A aptamer (Apt) to obtain an aptamer–nanogold probe (Apt‐AuNP) for bisphenol A (BPA). The probes were aggregated nonspecifically to form large clusters, which showed a strong resonance light scattering (RLS) peak at 520 nm, under preparation conditions (pH 7.6 Na2HPO4‐NaH2PO4 buffer and ultrasonication). Upon addition of BPA, the probe reacted specifically to form dispersed BPA‐Apt‐AuNP conjugates that exhibited strong catalysis of the two particle reactions of glucose‐Cu(II) and hydrazine hydrochloride‐Cu(II) with a strong RLS peak at 360 nm and 510 nm respectively. When the BPA concentration increased, the RLS intensity at 360 nm and 510 nm increased respectively. Accordingly, two new and highly‐sensitive RLS methods were established for the detection of BPA, using the Apt‐AuNP catalytic amplification. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The assembly of proteoglycan aggregates in chondrocyte cell cultures was examined in pulse-chase experiments with the use of [35S]sulphate for labelling. Rate-zonal centrifugation in linear sucrose density gradients (10-50%, w/v) was used to separate the aggregated proteoglycans from monomers and to assess the size of the newly formed aggregates. The proportion of aggregates stabilized by link protein was assessed by competition with added exogenous aggregate components. The capacity of the proteoglycans synthesized in culture to compete with exogenous nasal-cartilage proteoglycans for binding was studied in dissociation-reassociation experiments. The results were as follows. (a) The proteoglycan monomers and the hyaluronic acid are exported separately and combined extracellularly. (b) The size of the aggregates increases gradually with time as the proportion of monomers bound to hyaluronic acid increases. (c) All of the aggregates present at a particular time appear to be link-stabilized and therefore not dissociated by added excess of nasal-cartilage proteoglycan monomer or hyaluronic acid oligomers. (d) The free monomer is apparently present as a complex with link protein. The monomer-link complexes are then aggregated to the hyaluronic acid. (e) The aggregates synthesized in vitro and the nasal-cartilage aggregates differ when tested for link-stabilization by incubation at low pH. The aggregates synthesized in vitro were completely dissociated whereas the cartilage proteoglycans remained aggregated. The results obtained from dissociation-reassociation experiments performed at low pH indicate that the proteoglycan monomer synthesized in vitro does not bind the hyaluronic acid or the link protein as strongly as does the nasal-cartilage monomer.  相似文献   

6.
For the first time, triadimenol was used to determine nucleic acid (DNA) using the resonance light scattering (RLS) technique. The RLS of triadimenol was greatly enhanced by DNA in the range of pH 1.6 ~ 1.9. A resonance light‐scattering peak at 310nm was found, and the enhanced intensity of RLS at this wavelength was proportional to the concentration of DNA. The linear range of the calibration curve was 0 ~ 9 µg/ml with the detection limit of 24 ng ml? 1. The mechanism studies of the system indicated that the enhanced RLS is due to the aggregation of triadimenol on DNA. The nucleic acids in synthetic samples and in rice seedling extraction were analyzed with satisfactory results. Compared with other methods, this method is convenient, rapid, inexpensive and simple.  相似文献   

7.
Resonance light scattering (RLS) of Congo red (CR) was greatly enhanced by BSA (HSA) in the presence of Triton X-100 (TX-100). In sodium citrate-HCl buffer (pH 2.7-3.0), the enhanced intensity of resonance light scattering at 360 nm was in proportion to the concentration of proteins [corrected] The linear relationship was obtained between the resonance light scattering intensity and proteins in the range 5.0 x 10(-8)-8.0 x 10(-6) g/mL and 1.0 x 10(-9)-6.0 x 10(-6) g/mL for BSA and HSA, respectively. Their detection limits were 1.4 x 10(-8) g/mL and 2.8 x 10(-10) g/mL (S:N = 3), respectively. Synthetic and actual samples were analysed satisfactorily.  相似文献   

8.
The determination of imidacloprid with DNA via a resonance light scattering (RLS) technique was developed. The RLS of DNA was remarkably quenched after adding imidacloprid in aqueous medium of pH 2.10. An RLS peak at 311 nm was found, and the quenched intensity of RLS at this wavelength was proportional to the concentration of imidacloprid. The linear range of the calibration curve was approximately 0.02–2 μg/mL with the detection limit (S/N = 3) of 0.02 ng/mL. The imidacloprid in river water, cucumbers, and apple samples was determined. The recovery rates were in the range of 91.9% to 95.20%, 97.2% to 111.3%, and 94.5% to 114.8%, respectively. The mechanism of the reaction between imidacloprid and DNA is also discussed.  相似文献   

9.
The aim of this study was to develop an online fluorescent dye detection method suitable for high-pressure size exclusion chromatography (HP-SEC) and asymmetrical flow field flow fractionation (AF4). The noncovalent extrinsic fluorescent dye 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid (Bis-ANS) was added to the mobile phase or the sample, and the fluorescence emission at 488 nm was recorded on excitation at 385 nm. By combining HP-SEC and AF4 with online dye detection, it was possible to simultaneously detect heat-induced aggregation and structural changes of monomeric and aggregated immunoglobulin G (IgG); an increase in Bis-ANS fluorescence was observed in both the aggregate and monomer fractions. These structural changes of individual fractions, which were not detectable by online UV and multiangle laser light scattering (MALLS) or by stand-alone dynamic light scattering (DLS), intrinsic IgG fluorescence, and far-UV circular dichroism (CD), resulted in progressive aggregation on storage. The developed online fluorescent dye detection for HP-SEC or AF4 with Bis-ANS is a powerful method to detect both aggregation and structural changes of both monomeric and aggregated IgG in heat-stressed formulations.  相似文献   

10.
Upon assembly of the phycoerythrin trimer into hexamer and the hexamer into dodecamer, marked spectral changes are observed. The absorption and circular dichroism spectra of the various phycoerythrin aggregates were resolved into Gaussian components representing individual electronic transitions of phycoerythrobilin chromophores within these proteins. While the contribution of a broad, sensitizing band (at 525 nm) is constant, with increasing aggregate size, a short-wavelength pair of bands centered at 555 nm decreases concomitantly with a dramatic increase in the intensity of a long-wavelength pair of chromophore transitions centered at 563 nm. The implications of these spectral changes for efficient energy transfer in the phycobilisome are discussed.  相似文献   

11.
A novel cationic polyhedral oligomeric silsesquioxane nanoparticle (cationic POSS) was synthesized and successfully used as a new probe for the detection of DNA by resonance light scattering technique (RLS). It was found that the electrostatic interaction of cationic POSS and DNA could obviously enhance the RLS signal, the enhanced RLS intensity at 360 nm was proportional to the concentration of nucleic acids within the range of 0.35-42.82 microg ml-1 for calf thymus DNA, the determination limit (3sigma) was 0.32 ng ml-1. The results showed this method was very sensitive, convenient, rapid and reproducible.  相似文献   

12.
The deposition of beta-amyloid peptide (Abeta) fibrils around neurons is an invariable feature of Alzheimer's disease and there is increasing evidence that fibrillar deposits and/or prefibrillar intermediates play a central role in the observed neurodegeneration. One site of Abeta generation is the endosomes, and we have investigated the kinetics of Abeta association at endosomal pH over physiologically relevant time frames. We have identified three distinct Abeta association phases that occur at rates comparable to endosomal transit times. Rapid formation of burst phase aggregates, larger than 200nm, was observed within 15 seconds. Two slower association phases were detected by fluorescence resonance energy transfer and termed phase 1 and phase 2 aggregation reactions. At 20 microM Abeta, pH 6, the half lives of the phase 1 and phase 2 aggregation phases were 3.15 minutes and 17.66 minutes, respectively. Atomic force microscopy and dynamic light scattering studies indicate that the burst phase aggregate is large and amorphous, while phase 1 and 2 aggregates are spherical with hydrodynamic radii around 30 nm. There is an apparent equilibrium, potentially mediated through a soluble Abeta intermediate, between the large burst phase aggregates and phase 1 and 2 spherical particles. The large burst phase aggregates form quickly, however, they disappear as the equilibrium shifts toward the spherical aggregates. These aggregated species do not contain alpha-helical or beta-structure as determined by circular dichroism spectroscopy. However, after two weeks beta-structure is observed and is attributable to the insoluble portion of the sample. After two months, mature amyloid fibrils appear and the spherical aggregates are significantly diminished.  相似文献   

13.
For the first time, triadimenol was used to determine nucleic acid (DNA) using the resonance light scattering (RLS) technique. The RLS of triadimenol was greatly enhanced by DNA in the range of pH 1.6 to approximately 1.9. A resonance light-scattering peak at 310 nm was found, and the enhanced intensity of RLS at this wavelength was proportional to the concentration of DNA. The linear range of the calibration curve was 0 to approximately 9 microg/ml with the detection limit of 24 ng ml(-1). The mechanism studies of the system indicated that the enhanced RLS is due to the aggregation of triadimenol on DNA. The nucleic acids in synthetic samples and in rice seedling extraction were analyzed with satisfactory results. Compared with other methods, this method is convenient, rapid, inexpensive and simple.  相似文献   

14.
通过研究钌多吡啶类配合物[Ru(phen)2(bpip)]2+与DNA相互作用的共振光散射等光谱,我们发现[Ru(phen)2(bpip)]2+与DNA相互作用的方式包括插入作用和静电作用模式.同时基于[Ru(phen)2(bpip)]2+ DNA体系增强的共振光散射现象,建立了一种简单、快速的测定纳克级核酸的新方法.实验结果表明体系在373 nm处共振光散射强度的增强与DNA的浓度呈线性关系.线性范围为0.025~1.250 mg/L,线性公式为△IRLS=283.14C+2.26 (mg/L),相关系数为0.9983,DNA的检出限为5.7 ng/mL. 应用到实际样品的分析中,结果令人满意.  相似文献   

15.
A resonance light scattering (RLS) detection method for protein was developed, using a flow-injection system based on the enhancement of RLS signals from Biebrich scarlet (BS) by protein. The enhanced RLS intensities at 286.0 nm, in acidic aqueous medium, were proportional to the protein concentration over the range 0.005-18 microg/mL and 0.008-16 microg/mL for human serum albumin (HSA) and bovine serum albumin (BSA), respectively, with corresponding limits of detection (3sigma) of 5.00 ng/mL for HSA, and 7.80 ng/mL for BSA. The method was successfully applied to the quantification of total proteins in human serum samples.  相似文献   

16.
The effect of hexa-amine cobalt cations on the DNA condensation in aqueous solution was investigated by resonance light scattering (RLS). When the relative concentration of hexa-amine cobalt (III) cations to DNA is in the appropriate range, the cations will induce DNA condensation and aggregation, which results in a strong RLS spectrum characterized by a peak at 290.0 nm. The RLS technique is a powerful tool for monitoring DNA condensation and, under optimal conditions, the enhanced RLS intensity at 290.0 nm was proportional to the concentration of DNA in the range 0.01-6.0 microg/mL. Based on this, a sensitive and convenient analysis method for the microdetermination of DNA was established. The detection limit (3 s) of calf thymus DNA by the proposed method is 1.9 ng/mL and few substances interfere in the DNA determination.  相似文献   

17.
Interactions of plant tannins with polysaccharide hyaluronan are studied by means of light scattering and small-angle X-ray scattering (SAXS). In this paper, we show that (1) the tannin-polysaccharide complexes remain stable in colloidal suspension; (2) the masses and structures of colloidal tannin-polysaccharide objects depend on the tannin degree of polymerization; and (3) the densities of tannin-polysaccharide aggregates are about 7 times lower than the density of a single solvated polysaccharide molecule. Short tannins and polysaccharides are aggregated in loose oligomeric structures whose sizes are comparable to a single polysaccharide molecule. Tannins longer than 10 nm and polysaccharides are aggregated in larger microgel-like particles whose sizes exceed 200 nm.  相似文献   

18.
The toxic effects of ethanol on bovine serum albumin (BSA) were measured by resonance light scattering (RLS), fluorescence spectroscopy, ultraviolet spectrophotometry (UV), circular dichroism (CD), and transmission electron microscopy (TEM). The results indicated that ethanol had toxic effects on BSA, which led to protein denaturation and the effects increased with the ethanol dose. By means of RLS, BSA was found to aggregate in the presence of ethanol and particles smaller than 100 nm were observed from TEM. The fluorescence spectra showed that the intensity of the characteristic peak of BSA decreased and blue shifted, because of changes in the BSA skeleton structure, as well as alteration of the microenvironment of tryptophan (Trp) residues. The conformation changes of BSA were also shown by UV and CD spectrometry. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:66–71, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20314  相似文献   

19.
The interaction of antigen (Ag) and antibody (Ab) with poly diallyldimethylammonium chloride (PDDA) in aqueous solutions has been studied by optical absorption and resonance light‐scattering (RLS) spectroscopies. The formation of the three‐component‐complex is due to aggregates of Ab or Ag with PDDA by electrostatic interaction and aggregates of Ab with Ag by immunoreaction. The influences of some experimental factors, including incubation time, pH value, concentration of PDDA and concentration of Ab, on the aggregation process have also been studied. A linear relationship between the concentration of Ag and the RLS intensity was found. Under the optimal conditions, for a given concentration of Ab (4.6 µg/mL), the enhancement of RLS intensity is in proportion to the concentration of Ag in the range 0.03–0.83 µg/mL. The RLS could, in combination with immunoassay, be a rapid and sensitive detection method for Ag. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Turbidity measurements performed at 450 nm were used to follow the process of simple coacervation when 1% (w/v) aqueous alkali processed gelatin (type-B) solutions were titrated with methanol, ethanol, propanol, and tert-butyl alcohol at various pHs of the solution ranging from pH = 5 to 8 and ionic strengths varying from I = 0.01 to 0.1 M NaCl. The titration profiles clearly established the transition points in terms of the percentage of volume of alcohol added relative to that of solvent corresponding to the first occurrence of turbidity (Vt) and a point of turbidity maximum (Vp). Addition of more alcohol drove the system toward precipitation. The values of Vt and Vp characterized the initiation of intramolecular folding and intermolecular aggregate formation of the charge neutralized gelatin molecules and the subsequent micro coacervate droplet formation. The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation. The aggregates constitute the coacervate phase while the folded gelatin molecules mostly stay dispersed in the supernatant. The data taken together reveal the role played by solution entropy in addition to that of electrostatic and solute-solvent interactions, which had been overlooked hitherto.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号