首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

2.
Summary Electrophysiological evidence obtained with current- and voltage clamp experiments from single L-neurons of the ocellar nerve of locust (Locusta migratoria) questions a direct synaptic feedback from these neurons onto the photoreceptors. The synaptic currents recorded under voltage clamp reflected the photoresponse of the L-neuron, despite the fact it developed no synaptic activity under these conditions. This result is contrary to GABAergic feedback models proposed in the literature. Electrophysiological recordings, as well as immunocytochemistry revealing GABA and glutamate decarboxylase, indicated a possible contribution of S-neurons in such a feedback system. A population of probable S-neurons whose somas were in the pars intercerebralis adjacent to the ocellar nerve tracts was heavely labelled. About 10 fibres entered each tract and formed a dense network of fine arborizations within the ocellar plexiform layer. L-neurons showed no GABA-immunoreactivity. Based on these data a new model for GABAergic feedback is proposed and discussed.  相似文献   

3.
The ERG of the dragonfly ocellus has been analyzed into four components, two of which originate in the photoreceptor cells, two in the ocellar nerve fibers (Ruck, 1961 a). Component 1 is a sensory generator potential, component 2 a response of the receptor axons. Component 3 is an inhibitory postsynaptic potential, component 4, a discharge of afferent nerve impulses in ocellar nerve fibers. Responses to flickering light are examined in terms of this analytic scheme. It has been found that the generator potential can respond to higher rates of flicker—up to 220/sec.—than can the receptor axon responses, the postsynaptic potential, or the ocellar nerve impulses. The maximum flicker fusion frequency as measured by fusion of the ERG is that of the sensory generator potential itself.  相似文献   

4.
Intracellular responses from receptors and postsynaptic units have been recorded in the median ocellus of the dragonfly. The receptors respond to light with a graded, depolarizing potential and a single, tetrodotoxin-sensitive impulse at "on." The postsynaptic units (ocellar nerve dendrites) hyperpolarize during illumination and show a transient, depolarizing response at "off." The light-evoked slow potential responses of the postsynaptic units are not altered by the application of tetrodotoxin to the ocellus. It appears, therefore, that the graded receptor potential, which survives the application of tetrodotoxin, is responsible for mediating synaptic transmission in the ocellus. Comparison of pre- and postsynaptic slow potential activity shows (a) longer latencies in postsynaptic units by 5–20 msec, (b) enhanced photosensitivity in postsynaptic units by 1–2 log units, and (c) more transient responses in postsynaptic units. It is suggested that enhanced photosensitivity of postsynaptic activity is a result of summation of many receptors onto the postsynaptic elements, and that transients in the postsynaptic responses are related to the complex synaptic arrangements in the ocellar plexus to be described in the following paper.  相似文献   

5.
Magnusson AK  Park TJ  Pecka M  Grothe B  Koch U 《Neuron》2008,59(1):125-137
Central processing of acoustic cues is critically dependent on the balance between excitation and inhibition. This balance is particularly important for auditory neurons in the lateral superior olive, because these compare excitatory inputs from one ear and inhibitory inputs from the other ear to compute sound source location. By applying GABA(B) receptor antagonists during sound stimulation in vivo, it was revealed that these neurons adjust their binaural sensitivity through GABA(B) receptors. Using an in vitro approach, we then demonstrate that these neurons release GABA during spiking activity. Consequently, GABA differentially regulates transmitter release from the excitatory and inhibitory terminals via feedback to presynaptic GABA(B) receptors. Modulation of the synaptic input strength, by putative retrograde release of neurotransmitter, may enable these auditory neurons to rapidly adjust the balance between excitation and inhibition, and thus their binaural sensitivity, which could play an important role as an adaptation to various listening situations.  相似文献   

6.
Summary A study of the organisation of the locust dorsal ocellus shows that the structure is designed to provide the maximum possible effective aperture. The condenser-like cuticular lens and the dispersal of the rhabdome over a large proportion of the circumferential area of the retinula cells increases the light gathering power of the eye. The synaptic plexus of the ocellus has two major features: (i) the retinula cells are repeatedly and reciprocally connected by synapses and junctions, and (ii) there is an extensive lateral and feedback network between the receptors and interneurons. A unified structure is described for a synapse that presents differing profiles dependent upon the angle of section. A distinct morphological class of junction is described between retinula cells. The synaptic arrangements of morphologically identical retinula cells vary from cell to cell and the synaptic plexus is not organised with a high degree of spatial precision. The overall synaptic configurations are discussed in terms of the varied response characteristics of units in the ocellar nerve.  相似文献   

7.
Dorsal ocelli are small cup-like organs containing a layer of photoreceptor cells, the short axons of which synapse at the base of the cup with dendritic terminals of ocellar nerve fibers. The ocellar ERG of dragonflies, recorded from the surface of the receptor cell layer and from the long lateral ocellar nerve, contains four components. Component 1 is a depolarizing sensory generator potential which originates in the distal ends of the receptor cells and evokes component 2. Component 2 is believed to be a depolarizing response of the receptor axons. It evokes a hyperpolarizing postsynaptic potential, component 3, which originates in the dendritic terminals of the ocellar nerve fibers. Ocellar nerve fibers in dragonflies are spontaneously active, discharging afferent nerve impulses (component 4) in the dark-adapted state. Component 3 inhibits this discharge. The ERG of the cockroach ocellus is similar. The main differences are that component 3 is not as conspicuous as in the dragonflies and that in most cases ocellar nerve impulses appear only as a brief burst at "off." In one preparation a spontaneous discharge of nerve impulses was observed. As in the dragonflies, this was inhibited by illumination.  相似文献   

8.
Synaptic terminals on branches of an excitatory motor axon in a spider crab (Hyas areneas) were examined by electron microscopy to determine whether differences in size, structure, and number of synapses could be correlated with differences in transmitter release. Terminals releasing relatively large amounts of transmitter during low frequencies of nerve impulses ("high-output" terminals) had larger synapses, more prominent presynaptic dense bodies (active zones), and fewer synapses per unit length than terminals releasing relatively small amounts of transmitter ("low-output" terminals). Neither the difference in synaptic area, nor the quantitative differences in the active zones, were sufficient in themselves to explain the difference in synaptic efficacy, and it is postulated that a non-linear relationship may exist between structural features of the synapse and release of transmitter by a nerve impulse, and that differences other than those apparent from the ultrastructure could be involved. Greater facilitation at low-output terminals with high frequencies of nerve impulses may be due to greater reserves of "immediately available" transmitter, and to recruitment or activation of more individual synaptic contacts.  相似文献   

9.
Summary The spectral sensitivity of the ocellus in the cucumber looper moth, Anadevidia peponis, was investigated by recording electroretinograms (ERGs). The peak sensitivities were observed at 340 nm in the ultraviolet and at 520–540 nm in the green. Selective spectral adaptation revealed the existence of at least two receptor types in the ocellar retina. The ratio of green to ultraviolet sensitivities for an ocellus whose ocellar nerve was cut was higher than that for an intact ocellus. It is suggested that efferent signals which control the spectral sensitivity of the ocellus are present in the ocellar nerve.Abbreviations ERG electroretinogram - GR/UV green to ultraviolet sensitivities - ON ocellar nerve  相似文献   

10.
A powerful methodology for analyzing post-synaptic currents recorded from central neurons is presented. An unknown quantity of transmitter molecules released from presynaptic terminals by electrical stimulation of nerve fibers generates a post-synaptic response at the synaptic site. The current induced at the synaptic junction is assumed to rise rapidly and decay slowly with its peak amplitude being proportional to the number of released transmitter molecules. The signal so generated is then distorted by the cable properties of the dendrite, modeled as a time-invariant, linear filter with unknown parameters. The response recorded from the cell body of the neuron following the electrical stimulation is contaminated by zero-mean, white, Gaussian noise. The parameters of the signal are then evaluated from the observation sequence using a quasi-profile likelihood estimation procedure. These parameter values are then employed to deconvolve each measured post-synaptic response to produce an optimal estimate of the transmembrane current flux. From these estimates we derive the amplitude of the synaptic current and the relative amount of transmitter molecules that elicited each response. The underlying amplitude fluctuations in the entire data sequence are investigated using a non-parametric technique based on kernel smoothing procedures. The effectiveness of the new methodology is illustrated in various simulation examples.  相似文献   

11.
Katagiri H  Fagiolini M  Hensch TK 《Neuron》2007,53(6):805-812
Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.  相似文献   

12.
The neuroeffector properties of four blood vessels with diverse characteristics are compared and contrasted. The variables include the density and distribution pattern of sympathetic innervation; size, direction, and nerve frequency-characteristics of the neurogenic response, nature of the sympathetic transmitter, receptor types, and receptor-response coupling; and the level and temperature sensitivity of myogenic tone. In many instances, these features can be related to the functional role of the vessels and their pharmacological characteristics. The underlying basis of this diversification, with one exception, which can be related to developmental origin, is entirely unknown.  相似文献   

13.
Two methods are described for the immunocytochemical demonstration of immunoreactive gamma-aminobutyric acid (GABA) in the visual cortex of the cat, an area that contains several types of GABAergic neurons and requires combined methods for their characterization. The first method is illustrated by a representative example of a Golgi-impregnated and gold-toned interneuron of the "bitufted" type situated in layer VI and having an ascending axon. After recording the three-dimensional features of the cell, semithin (0.5 micron) sections of the perikaryon were cut and GABA was demonstrated in the cell body by the unlabeled antibody enzyme method. While immunocytochemistry was used to determine the probable transmitter of the neuron, Golgi-impregnation of the same cell was used to identify its neuronal type. Since aldehyde-osmium fixation was used, further electron microscopic (EM) analysis of the neuron's synaptic connections was possible. The second procedure demonstrated GABA in EM sections of aldehyde-osmium-fixed cortex using protein A-gold as an immunocytochemical marker. Immunoreactivity was found in certain neurons, dendrites, axons, and boutons forming type II synaptic contacts that from previous studies have been thought to be GABAergic. Thus ultrastructural analysis using optimal conditions can now be supplemented with the identification of the transmitter in the same section.  相似文献   

14.
Summary The central projections of the lateral ocellar neurons of the dragonfly were examined using whole nerve cobalt iontophoresis, supplemented by sectioning of the nerve and brain for inspection in the light and electron microscopes. At E.M. level the presence of cobalt in filled axon profiles and cell bodies was confirmed by analysis of X-ray energy spectra in the microscope.The pathways, cell body sites and terminal arborizations of four large (7–25 m diameter) lateral ocellar neurons are described. Two of these fibers arborize in the ipsilateral posterior neuropil of the protocerebrum and two cross the brain and arborize in the contralateral posterior neuropil. Within each half of the posterior neuropil, two spatially separated regions of ocellar input have been identified. These regions receive median ocellar input plus input from either the ipsi- or contralateral ocellus, but not both. The arborizations of the contralateral fibers are more extensive than those of the ipsilateral fibers.One of the contralateral neurons crosses the brain in the region of the protocerebral bridge giving off a collateral in that region before descending to the posterior neuropil. This collateral arborizes almost immediately in a region receiving input from arborizations of a number of small ocellar neurons (those less than 5 m in diameter) from the ipsilateral ocellar nerve, together with small neurons from the median ocellar nerve, forming a region in each half of the brain which receives input from all three ocelli. The small lateral ocellar neurons associated with these arborizations have cell bodies adjacent to the lateral ocellar tracts.This work was supported in part by National Institute of Health Grants 2 RO1 EY-00777 and 1 KO4 EY-00040  相似文献   

15.
One of the pathways implicated in a fine-tuning control of neurosecretory process is the activation of presynaptic receptors. The present study was focused on the role of presynaptic glutamate receptor activation in the regulation of inhibitory synaptic transmission in the rat hippocampus and cortex. We aimed to clarify what types of ionotropic glutamate receptors are involved in the modulation of GABA secretion, and what mechanism underlies this modulation. We have revealed that specific agonists of kainate and NMDA receptors, kainate and NMDA, like glutamate, induced the release of [3H]GABA from hippocampal and cortical nerve terminals suggesting the involvement of both types in the regulation of GABAergic transmission. Our results indicate preferential involvement of vesicular, but not cytosolic, pool in response to glutamate receptor activation. This is based on the finding that NO-711 (a specific inhibitor of plasma membrane GABA transporters), fails to attenuate [3H]GABA release. We have concluded that presynaptic glutamate receptor-induced modulation of the strength of synaptic response is due to increasing the release probability of synaptic vesicles.  相似文献   

16.
Neuromodulators that alter the balance between lower-frequency glutamate-mediated excitatory and higher-frequency GABA-mediated inhibitory synaptic transmission are likely to participate in core mechanisms for CNS function and may contribute to the pathophysiology of neurological disorders such as schizophrenia and Alzheimer's disease. Pregnenolone sulfate (PS) modulates both ionotropic glutamate and GABA(A) receptor mediated synaptic transmission. The enzymes necessary for PS synthesis and degradation are found in brain tissue of several species including human and rat, and up to 5 nM PS has been detected in extracts of postmortem human brain. Here, we ask whether PS could modulate transmitter release from nerve terminals located in the striatum. Superfusion of a preparation of striatal nerve terminals comprised of mixed synaptosomes and synaptoneurosomes with brief-duration (2 min) pulses of 25 nM PS demonstrates that PS increases the release of newly accumulated [3H]dopamine ([3H]DA), but not [14C]glutamate or [3H]GABA, whereas pregnenolone is without effect. PS does not affect dopamine transporter (DAT) mediated uptake of [3H]DA, demonstrating that it specifically affects the transmitter release mechanism. The PS-induced [3H]DA release occurs via an NMDA receptor (NMDAR) dependent mechanism as it is blocked by D-2-amino-5-phosphonovaleric acid. PS modulates DA release with very high potency, significantly increasing [3H]DA release at PS concentrations as low as 25 pM. This first report of a selective direct enhancement of synaptosomal dopamine release by PS at picomolar concentrations via an NMDAR dependent mechanism raises the possibility that dopaminergic axon terminals may be a site of action for this neurosteroid.  相似文献   

17.
Fine structure of the dorsal ocellus of the worker honeybee   总被引:1,自引:0,他引:1  
The three dorsal ocelli of worker honeybees have been studied by light and electron microscopy. Each ocellus has a single flattened spheroidal lens and about 800 elongated retinular cells. Retinular cells are paired and form a two-part plate-like rhabdom between their distal processes. Each rhabdomere comprises parallel microvilli projecting laterally from the apposed retinular cells. Primary receptor cell axons synapse within the ocellus with ocellar nerve fibers of two different calibers. Each ocellus has eight thick fibers ca 10 m?m in diameter and several thinner ones less than 3 m?m in diameter. Fine structural evidence suggests that retinular axons end presynaptically on both types of ocellar nerve fibers. Since all retinular cells apparently synapse repeatedly with the thick fibers this involves a convergence of about 100:1. Thick fibers always terminate postsynaptically within the ocellus while thin fibers terminate presynaptically on other thin fibers, thick fibers or retinular axons. Structural evidence for synaptic polarization indicates that retinular cells and thick fibers are afferent, thin fibers efferent. Thus complex processing of the ocellar visual input can occur before the secondary neurons of the three ocelli converge to form the single short ocellar nerve which runs to the posterior forebrain.  相似文献   

18.
Summary Studies of the dorsal ocelli of the wasp Paravespula vulgaris (L.) led to the following results: Under a biconvex corneal lens, 150 m in thickness, about 600 receptor cells are located. The rhabdomeres of two adjacent cells form a closed plate-like rhabdom (0.5–1.0 m in thickness, 6 m in width and 10–25 m in depth or length).In the lateral ocellus the receptor cells synapse up to 8 ocellar nerve fibers, and in the median ocellus they synapse up to 16 (20–30 m thick) ocellar nerve fibers.The ocellar synaptic plexus may display three types of synapses between the two types of neurons: (i) Receptor-cell axons are presynaptic to dendrites of the first-order interneurons. (ii) Dendrites of the first-order interneurons are presynaptic to receptor-cell axons. (iii) The subunits of a dendrite of first-order interneurons form synapses with each other.The present work was partially supported by the Stiftung Volkswagenwerk  相似文献   

19.
The neurotransmitter cycle and quantal size   总被引:4,自引:0,他引:4  
Edwards RH 《Neuron》2007,55(6):835-858
Changes in the response to release of a single synaptic vesicle have generally been attributed to postsynaptic modification of receptor sensitivity, but considerable evidence now demonstrates that alterations in vesicle filling also contribute to changes in quantal size. Receptors are not saturated at many synapses, and changes in the amount of transmitter per vesicle contribute to the physiological regulation of release. On the other hand, the presynaptic factors that determine quantal size remain poorly understood. Aside from regulation of the fusion pore, these mechanisms fall into two general categories: those that affect the accumulation of transmitter inside a vesicle and those that affect vesicle size. This review will summarize current understanding of the neurotransmitter cycle and indicate basic, unanswered questions about the presynaptic regulation of quantal size.  相似文献   

20.
The question is raised as to whether competitive inhibitors should block responses of tissue to nerve-released neurotransmitter to the same extent as they block equivalent responses to exogenous agonist. From a simple dynamic model of synaptic events, which takes into account non-constancy of transmitter concentration in space and time, it is deduced that equal blockade of responses to nerve-released and exogenous transmitter substance will occur if: (i) there are locally many more receptor molecules than transmitter molecules; (ii) the active agonist-receptor complex, AnR, has n = 1; and (iii) tissue response is insensitive to spatial or temporal inhomogeneity of AR. In such a case there will also be equal sensitivity of responses to other modes of inhibition: irreversible competitive, uncompetitive, and non-competitive. Equal blockade of responses to equi-effective endogenous and exogenous agonist will also occur if nerve stimulation gives rise to a steady uniform concentration of agonist, so that equilibrium kinetics are applicable. When n greater than 1 and/or when tissue responses reflect local peak AnR, response to nerve-released transmitter will be relatively insensitive to receptor blockade by a competitive inhibitor. The same is true for irreversible competitive blockade or for modulation of receptor density. However, an uncompetitive inhibitor (e.g. a 'channel blocker') may be more effective against nerve-released agonist than against exogenous agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号