首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Konno, H., Yamasaki, Y. and Katoh, K. 1987. Purification of an α-L-arabinofurano-sidase from carrot cell cultures and its involvement in arabinose-rich polymer degradation.
An α-L-arabinofuranosidase (α-L-arabinofuranoside arabinofuranohydrolase, EC 3.2.1.55) was isolated from a homogenate of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The buffer-soluble enzyme was purified to homogeneity by a procedure involving ammonium sulfate fractionation, chromatography on DEAE-Sephadex A-50, Sephadex G-150, Con A-Sepharose 4B and CM-Sephadex C-50, and preparative polyacrylamide gel electrophoresis. The size of this enzyme as determined by polyacrylamide gel electrophoresis in the presence of sodium laurylsulfate and by Sephadex G-200 gel filtration was 94 and 110 kDa, respectively. The isoelectric point was at pH 4.7. The Km and Vmax values for p-nitrophenyl α-L-arabinofuranoside were 1.33 mM and 20.2 μimol (mg protein)-1 h-1, respectively. The optimal activity occurred at pH 4.2 with Mcllvaine buffer. The enzyme was stimulated by Ca2+ and Zn2+, whereas it was strongly inhibited by Cu2+, Ag2+, Hg2+, p-chloromercuri-benzoate and L-arabono-l,4-lactone. The enzyme acted on beet arabinan in an exo-fashion. Furthermore, the enzyme was partially involved in the hydrolysis of the ara-binogalactan and pectic polymer purified from carrot cell walls.  相似文献   

2.
Five glycosidase activities from cell homogenate of carrot ( Daucus carota L. cv. Kintoki) cell cultures were assayed after extraction successively by phosphate buffer (pH 7.0) and the buffer plus 2 M NaCl. A β-galactosidase (EC 3.2.1.23) was isolated in a highly purified state from the buffer-soluble protein fraction by ammonium sulfate fractionation and chromatography on CM-Sephadex C-50, DEAE-Sephadex A-50 and Sephadex G-200. The molecular weight of this enzyme was ca 104 000 and the isoelectric point was pH 7.8. The optimal activity occurred at pH 4.4 with McIlvaine buffer. The Km and Vmax values were 1.67 m M and 201 units (mg protein)−1, respectively, for p -nitrophenyl β- d -galactopyranoside. The enzyme activity was strongly inhibited by Zn2+, Cu2+, Hg2+ and d -galactono-1,4-lactone. The enzyme acted on the β-1,4-linked galactan prepared from citrus pectin in an exo-fashion. Furthermore, the enzyme was slightly involved in the hydrolysis of the pectic polymer and cell walls purified from carrot cell cultures.  相似文献   

3.
Exo-polygalacturonase (exo-PGase, EC 3.2.1.67) activity has been detected in a culture filtrate of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The extracellular exo-PGase was purified to electrophoretic homogeneity using DEAE-Sephadex A-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and preparative polyacrylamide gel electrophoresis (PAGE). The molecular mass of the purified enzyme was calculated to be 48 kDa from Sephadex G-200 gel filtration, and 50 kDa from sodium dodecyl sulfate (SDS)-PAGE after treatment with SDS and 2-mercaptoethanol. The isoelectric point was at pH 6.2. The Km and Vmax values for polygalacturonate (degree of polymerization: 52) were 14.4 μ M and 25.6 μmol (mg protein)−1 h−1, respectively. The optimal activity in McIlvaine's buffer occurred at pH 4.6. The enzyme activity was inhibited by Ba2+, Cu2+, Mn2+ and Hg2+. The enzyme was involved in ca 15% hydrolysis of the acidic polymer purified from carrot pectic polysaccharides, and connected with the release of galacturonic acid. Even after an exhaustive reaction the enzyme had, however, little or no effect on cell walls from carrot cell cultures.  相似文献   

4.
6-Hydroxymellein (6HM) synthase is a multifunctional polyketide enzyme induced in carrot cells, whose fully active homodimer catalyzes condensation of acyl-CoAs and the NADPH-dependent ketoreduction of the enzyme-bound intermediate. 6HM-forming activity of the synthase was markedly decreased when the reaction mixture pH was adjusted from 7.5 to 6.0. However, under these slightly acidic conditions, the acyl condensation catalyzed by the dissociated monomer enzyme was appreciably stimulated by addition of free coenzyme A (CoA). In contrast, the condensation reaction at pH 6.0 was significantly inhibited in the presence of CoA when the reaction was carried out with the NADPH-omitted dimer synthase. Among the kinetic parameters of the acyl condensation, velocity of the monomer-catalyzing reaction at the acidic pH was appreciably increased upon addition of CoA while K(m)s did not show any significant change in the presence and absence of the compound. These results suggest that CoA associates with a specific site in the dissociated monomeric form of 6HM synthase, and the velocity of the acyl condensation reaction catalyzed by the CoA-synthase complex appreciably increases in acidic conditions.  相似文献   

5.
The Maceration of Vegetable Tissue by a Strain of Bacillus subtilis   总被引:4,自引:3,他引:1  
Pectate lyase (PAL EC 4.2.2.2), pectinesterase (PE EC 3.1.1.11), L-arabinanase, D-xylanase, D-galactanase and neutral protease activities were identified in culture filtrates prepared from a strain B3 of Bacillus subtilis isolated from carrot. The PAL was purified by ion-exchange chromatography and iso-electric focusing and its properties examined. PAL had a pI of 9·85 and a molecular weight of 33000. Optimum activity occurred at pH 8–9 and 60–65°C. Calcium and to a lesser extent strontium were stimulatory while ethylenediamine tetraacetic acid led to inactivation. Thin layer chromatography separations of the end products of reactions and viscosity measurements suggested that the enzyme acted in a random manner. When examined over a range of pH values both culture filtrate and the purified PAL produced two distinct peaks of maceration (pH 6–6·5 and 8–9) against carrot or potato tissues. Evidence was obtained that although the presence of lyase was the sole external factor responsible for the maceration of carrot at pH 6·0, it acted in conjunction with a heat-labile, high molecular weight factor extractable from carrot tissue. Carrot extracts were unable to macerate carrot but liberated reducing groups from polygalacturonic acid and it is suggested that the factor may be, in part at least, carrot polygalacturonase. Maceration at pH 8·5 was largely accounted for by PAL and PE activities.  相似文献   

6.
H S Lee  A Sturm 《Plant physiology》1996,112(4):1513-1522
Neutral and alkaline invertase were identified in cells of a suspension culture of carrot (Daucus carota L.) and purified to electrophoretic homogeneity. Neutral invertase is an octamer with a molecular mass of 456 kD and subunits of 57 kD, whereas alkaline invertase is a tetramer with a molecular mass of 504 kD and subunits of 126 kD. Both enzymes had sharp pH profiles, with maximal activities at pH 6.8 for neutral invertase and pH 8.0 for alkaline invertase, and both hydrolyzed sucrose with typical hyperbolic kinetics and similar Km values of about 20 mM at pH 7.5. Neutral invertase also hydrolyzed raffinose and stachyose and, therefore, is a beta-fructofuranosidase. In contrast, alkaline invertase was highly specific for sucrose. Fructose acted as a competitive inhibitor of both enzymes, with Ki values of about 15 mM. Glucose was a noncompetitive inhibitor of both neutral and alkaline invertase, with a Ki of about 30 mM. Neither enzyme was inhibited by HgCl2. Alkaline invertase was markedly inhibited by CaCl2, MgCl2, and MnCl2, and neutral invertase was not. In contrast to alkaline invertase, neutral invertase was inhibited by the nucleotides ATP, CTP, GTP, and UTP.  相似文献   

7.
Rohament P, a macerating enzyme preparation from Aspergillus alleaceus containing an endo-polygalacturonase as the major activity but also substantial amounts of cellulase(s), was purified by affinity chromatography on Avicel cellulose. Treating Rohament P with Avicel at different protein:cellulose ratios was more efficient in columns than in batch. An Avicel column, with an enzyme:substrate ratio of 1:80, retained 94% of cellulase from Rohament P in 60 min at 40–45°C, pH 4.4. Treated enzyme containing 6% residual cellulase, when incubated with fresh carrot rasps, released the maximum amount of cells with intact cell walls. Untreated enzyme did not macerate the carrot tissue but liquified under same conditions. Degradation of a washed carrot preparation by treated enzyme was 44% compared with 55% for the untreated enzyme. Gas chromatographic analysis of sugars revealed that treated Rohament P liberated less glucose and others sugars than did untreated enzyme. Enzyme visualization studies of treated and untreated Rohament P reflected a quantitative difference in protein bands in a pH gradient of 4–6 in miniature isoelectric focusing. Application of treated and untreated Rohament P to disks of carrot tissue led to ultrastructural changes. Untreated Rohament P dissolved the middle lamella and disintegrated the fibrillar material predominantly throughout the cell wall, resulting mainly in cell breakage. Treated Rohament P preferentially dissolved the middle lamellar region of the cell wall without touching the fibrillar part. This indicates that pectin is confined to the middle lamellar region.  相似文献   

8.
Pectate lyase was isolated from the cell extract of Erwinia aroideae. The enzyme was further purified to a high degree by a procedure involving ammonium sulfate fractionation and chromatography on CM-Sephadex C-50 and on Sephadex G-200. The enzyme attacked its substrate in an endo fashion and was more active on the sodium salt of acid-insoluble polygalacturonate or pectic acid than it was on the methoxylated pectin. The enzyme had an optimum pH at 9.3, was stimulated by calcium ions, and was completely inhibited by ethylenediaminetetraacetic acid. In addition, the reaction products showed an absorption maximum between 230 and 235 nm and reacted with thiobarbituric acid. These results indicate that the purified enzyme is an endopectate lyase. The endopectate lyase also had the ability to solubilize effectively the pectic fraction from the cell walls of carrot (Daucus carota) root tissue. The enzyme released 30.5% of the wall as soluble products and also liberated all of the galacturonic acid present in the walls. The total neutral sugars released by the enzyme were 10.6% of the walls, which corresponded to 71.5% of noncellulosic neutral sugars. The soluble products were separated into five fractions by DEAE-Sephadex A-50 column chromatography. Based on the analysis of sugar composition of each fraction, the pectic fraction of carrot cell wall is presented.  相似文献   

9.
R.M. Niles  M.S. Mount 《Phytochemistry》1974,13(12):2735-2740
A cyclic nucleotide phosphodiesterase has been isolated and partially purified from carrot tap-root tissue. The properties of this enzyme are very different from cyclic AMP phosphodiesterases found in mammalian cells. A dialyzable inhibitor of carrot cyclic nucleotide phosphodiesterase was also isolated from carrot tissue. Because the inhibitor behaved like inorganic phosphate on ion-exchange chromatography and inhibited the enzyme in proportion to its inorganic phosphate content, the inhibitor was tentatively identified as inorganic phosphate.  相似文献   

10.
Previously we reported the presence of a soluble phosphatidylinositol 4-kinase (PI 4-Kinase) in carrot (Daucus carota L.) suspension culture cells (C.M. Okpodu, W. Gross, W.F. Boss [1990] Plant Physiol 93: S-63). We have purified the enzyme over 1000-fold using Q-Sepharose ion exchange, hydroxylapatite, and G-100 gel filtration column chromatography. The Mr of the enzyme was estimated to be 83,000 by gel filtration. PI 4-kinase activity was recovered after renaturation of the 80-kD region of polyacrylamide gels, and an 80-kD peptide cross-reacted with antibodies to the yeast 55-kD membrane-associated PI 4-kinase on western blots. The isolated lipid kinase phosphorylated PI but not lysophosphatidylinositol or phosphatidylinositol monophosphate. Maximal PI kinase activity occurred when the substrate was added as Triton X-100/PI mixed micelles at pH 8. The enzyme required divalent cations. At low concentrations (1-5 mM), Mn2+ was more effective than Mg2+ in increasing enzyme activity; however, maximal activity occurred at 25 to 40 mM Mg2+. Calcium from 0.01 [mu]M to 1 mM had no effect on the enzyme activity. The Km of the enzyme for ATP was estimated to be between 400 and 463 [mu]M. The enzyme was inhibited by adenosine (100 [mu]M); however, ADP (up to 100 [mu]M) had no effect on the activity. The biochemical characteristics of the carrot soluble PI 4-kinase are compared with the previously reported PI 4-kinases from animals and yeast.  相似文献   

11.
The production of pectin lyase (PL) was dependent on medium pH with two peaks of production, at pH 61 and 7-2, that at pH 61 showing considerably higher activity. Crude PL activity was stable for at least 3 h at both 30 and 40C. At 50C there was a 20%, reduction in activity after 1 h; at 60C there was a 40% reduction after 30 min yet > 50% activity was retained for a further 2 h. The crude enzyme exhibited macerating ability against carrot tissue commensurate with that of a currently available commercial pectinase enzyme.  相似文献   

12.
《Phytochemistry》1986,25(10):2305-2307
The carrot phytoalexin, 6-methoxymellein, was isolated and purified from carrot root slices infected by the fungus Chaetomium globosum. It inhibited the basal and calmodulin-promoted activity of cyclic nucleotide phosphodiesterase. The inhibition of calmodulin-promoted diesterase activity was reduced by increasing the concentration of calmodulin or calcium while the inhibition of basal diesterase activity was reversed by the addition of magnesium to the assay mixture of the enzyme.  相似文献   

13.
β-Galactosidase (β-Galase, EC 3.2.1.23) activity has been detected in a culture medium of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The extracellular β-Galase (β-Galase-II) was purified to electrophoretic homogeneity from the concentrated medium using ammonium sulfate precipitation, chromatography on CM-Sephadex C-50. DEAE-Sepharose CL-6B and Sephacryl S-200HR, and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 65 kDa by Sephacryl S-200HR gel-permeation, and 60 kDa by SDS-PAGE after treatment with SDS and 2-mercaptoethanol. The pI was 6.5. The Km and Vmax values for p -nitrophenyl (PNP)-β-D-galactopyranoside were 0.17 m M and 31.9 μmol (mg protein)-1, h-1, respectively. The optimal activity in McIlvaine's buffer occurred at pH 4.0–4.4. The enzyme activity was inhibited by Co24, Cu2+, Hg2-, p -chloromercuribenzoate (PCMB) and D-galactono-1,4-lactone. The enzyme acted on citrus galactan and larchwood arabinogalactan in an exo-fashion, and was slightly involved in the hydrolysis of an acidic pectic polymer containing arabinosyl and galactosyl residues and in the breakdown of cell walls isolated from carrot cell cultures.  相似文献   

14.
A specific sucrose phosphatase from plant tissues   总被引:6,自引:2,他引:4       下载免费PDF全文
1. A phosphatase that hydrolyses sucrose phosphate (phosphorylated at the 6-position of fructose) was isolated from sugar-cane stem and carrot roots. With partially purified preparations fructose 6-phosphate, glucose 6-phosphate, fructose 1-phosphate, glucose 1-phosphate and fructose 1,6-diphosphate are hydrolysed at between 0 and 2% of the rate for sucrose phosphate. 2. The activity of the enzyme is increased fourfold by the addition of Mg(2+) ions and inhibited by EDTA, fluoride, inorganic phosphate, pyrophosphate, Ca(2+) and Mn(2+) ions. Sucrose (50mm) reduces activity by 60%. 3. The enzyme exhibits maximum activity between pH6.4 and 6.7. The Michaelis constant for sucrose phosphate is between 0.13 and 0.17mm. 4. At least some of the specific phosphatase is associated with particles having the sedimentation properties of mitochondria. 5. A similar phosphatase appears to be present in several other plant species.  相似文献   

15.
Saccharomyces dairensis and Sacch. exiguus were isolated as the spoilage flora of coleslaw stored at 5 degrees and 10 degrees C. The growth of these yeasts in mixtures of mayonnaise with vegetable was inhibited by onion. Mayonnaise alone killed the yeasts, primarily because of its content of acetic acid and this effect increased as the temperature was increased and as the pH was decreased. Addition of cabbage or carrot tissue removed the lethal effect of mayonnaise and allowed spoilage, by absorbing acetic acid and increasing the pH.  相似文献   

16.
Highly purified exo-polygalacturonase was obtained from suspension cultures of carrot ( Daucus carota L. cv. Kintoki) by dialysis at pH 5.2, chromatography on DEAE-Sephadex A-50 and on Sephadex G-150, and preparative polyacrylamide disc gel electrophoresis. The enzyme did not attack the isolated carrot cell walls directly, but it had some effect on pectic polysaccharides extracted from the walls. The extracted polysaccharides were fractionated by DEAE-Sephadex A-50 column chromatography yielding four carbohydrate fractions. The major fraction (P-3) was then reacted with the exo-polygalacturonase. The enzyme treatment resulted in hydrolysis of approximately 18% of the glycosyl linkages of fraction P-3 with the release of galacturonic acids. The molecular size estimated by Bio-Gel A-5m gel filtration was not markedly affected by the enzyme action, but the percentage of galacturonosyl residues was clearly reduced. The specific activity of exo-polygalacturonase changed during the growth cycle, in relation to the cell growth.  相似文献   

17.
We have shown previously that a nuclear phosphatidylinositol (PI) 4-kinase activity was present in intact nuclei isolated from carrot suspension culture cells (Daucus carota L.). Here, we further characterized the enzyme activity of the nuclear enzyme. We found that the pH optimum of the nuclear-associated PI kinase varied with assay conditions. The enzyme had a broad pH optimum between 6.5–7.5 in the presence of endogenous substrate. When the substrate was added in the form of phosphatidylinositol/phosphatidylserine (PI/PS) mixed micelles (1 mM PI and 400 μM PS), the enzyme had an optimum of pH 6.5. In comparison, the pH optimum was 7.0 when PI/Triton X-100 mixed micelles (1 mM PI in 0.025 %, v/v final concentration of Triton X-100) were used. The nuclear-associated PI kinase activity increased 5-fold in the presence of low concentrations of Triton X-100 (0.05 to 0.3 %, v/v); however, the activity decreased by 30 % at Triton X-100 concentrations greater than 0.3 % (v/v). Calcium at 10 μM inhibited 100 % of the nuclear-associated enzyme activity. The Km for ATP was estimated to be between 36 and 40 μM. The nuclear-associated PI kinase activity was inhibited by both 50 μM ADP and 10 μM adenosine. Treatment of intact nuclei with DNase, RNase, phospholipase A2 and Triton X-100 did not solubilize the enzyme activity. Based on sensitivity to calcium, ADP, detergent, pH optimum and the product analysis, the nuclear-associated PI 4-kinase was compared with previously reported PI kinases from plants, animals and yeast.  相似文献   

18.
Carrot ( Daucus carota L. cv. Kintoki) cell cultures secrete an α-L-arabinofuranosidase (α-L-AFase, EC 3.2.1.55) into their culture medium during growth. The extracellular α-L-AFase (α-L-AFase-II) was purified to electrophoretic homogeneity from the concentrated medium using ammonium sulfate precipitation, chromatography on DEAE-Sepharose CL-6B, CM-Sepharose CL-6B, Sephacryl S-200HR and Concanavalin A-Sepharose, and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 84 kDa by Sephacryl S-200HR gel-permeation, and 80 kDa by SDS-PAGE under denaturing conditions. The enzyme contained carbohydrate and protein in a ratio of 1:5 (w/w), and was analyzed for amino acid composition and the sequence of the first 21 amino acids of the N-terminus. The isoelectric point was pH 5.6, the pH optimum 3.8, and the temperature optimum 55°C. The activity was inhibited by Zn2+, Ag2+, Cu2+, Hg2+ and p -chloromercuribenzoate. The Km and Vmax values for p -nitrophenyl-α-L-arabinofuranoside were 0.22 m M and 0.11 mmol (mg protein)−1 h−1, respectively. The enzyme acted on beet arabinan in an exo-fashion, and was capable of hydrolysing arabinose-rich polymers purified from pectic polysaccha-rides of carrot cell cultures. However, even after an exhaustive reaction, the enzyme had little or no effect on cell walls from carrot cell cultures.  相似文献   

19.
Saccharomyces dairensis and Sacch. exiguus were isolated as the spoilage flora of coleslaw stored at 5° and 10°C. The growth of these yeasts in mixtures of mayonnaise with vegetable was inhibited by onion. Mayonnaise alone killed the yeasts, primarily because of its content of acetic acid and this effect increased as the temperature was increased and as the pH was decreased. Addition of cabbage or carrot tissue removed the lethal effect of mayonnaise and allowed spoilage, by absorbing acetic acid and increasing the pH.  相似文献   

20.
Carrot roots were found to be resistant to Pythium aphanidermatumbut not to Rkizopus stolonifer. Such factors as temperatureof incubation for the inoculated hosts and pH of the host tissuedid not provide any clue to the resistance of carrot to theformer pathogen. Tests for a preformed inhibitor of pectic enzymesof the fungus in carrot, or formation of such a substance asa result of host-fungus interaction, gave negative results.The resistance was attributed to the presence of a phenoliccompound in carrot, which inhibited the growth of the former,but not of the latter. When the factor for resistance was appliedin the susceptible hosts at the site of inoculation with thefungus, the hosts showed resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号