首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.  相似文献   

2.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

3.
Tobacco (cv. Xanthi and cv. Wisconsin 38), rice, carrot, tomato, and soybean tissue cultures were grown in liquid media containing L-tryptophan. The addition of tryptophan increased the cellular tryptophan levels greatly (12–2500 fold), but did not lower appreciably the levels of two tryptophan biosynthetic enzymes, anthranilate synthetase and tryptophan synthetase. However, the addition of 50 μM tryptophan to the crude enzyme extract completely inhibited the anthranilate synthetase activity while 1 mM tryptophan inhibited the tryptophan synthetase activity by only 10–20°/o. This information indicates that tryptophan biosynthesis is controlled by the feedback inhibition of anthranilate synthetase by tryptophan and not by repression of enzyme synthesis. All of the species had significant enzyme levels. Anthranilate synthetase activity could not be detected in extracts from cells grown on tryptophan unless the extracts were first passed through two G-25 Sephadex columns with a short 30 °C warming step in between, a procedure shown to remove an inhibitor of the enzyme.  相似文献   

4.
Enzymes of the Tryptophan Pathway in Acinetobacter calco-aceticus   总被引:7,自引:5,他引:2       下载免费PDF全文
All enzymes of the tryptophan synthetic pathway were detectable in extracts from wild-type Acinetobacter calco-aceticus. The levels of these enzymes were determined in extracts from a number of auxotrophs grown under limiting tryptophan. In each case only anthranilate synthetase was found to be present in increased amounts, whereas the specific activities of the remaining enzymes remained unchanged and unaffected by the tryptophan concentration. Derepression of anthranilate synthetase was found to occur as the concentration of tryptophan became limiting. Anthranilate synthetase and phosphoribosyl transferase activities are both feedback-inhibited by tryptophan. Molecular weight determination carried out by gel filtration and zonal centrifugation in sucrose revealed that all the enzymes are less than 100,000, and no molecular aggregates of these enzymes were detected. The data indicate that tryptophan synthesis in Acinetobacter is regulated both by feedback inhibition of the first two enzymes of the pathway and by repression control of anthranilate synthetase.  相似文献   

5.
Potato cell suspension cultures (Solanum tuberosumL. cv. Merrimack) have been selected which are resistant to growth inhibition by D,L-5-methyltryptophan. Anthranilate synthetase activity in crude extracts from resistant cells was less sensitive to feedback inhibition by L-tryptophan and D,L-5-methyltryptophan than the activity from the sensitive line. This altered feedback control apparently accounts for the cell's resistance to growth inhibition since there is a 48-fold increase in free tryptophan in one of the resistant cell lines. Preparative polyacrylamide gel electro-phoresis separated feedback-sensitive and -resistant forms of anthranilate synthetase in extracts from both 5-methyltryptophan-susceptible and -resistant cells, with a predominance of the corresponding form in the respective cell type. The anthranilate synthetase activity from the 5-methyltryptophan-resistant line was inactivated more slowly by incubation of crude extracts at 50°C than the activity from the sensitive line. These results suggest the presence of two isoenzymes of anthranilate synthetase in cultured potato cells.  相似文献   

6.
A homogeneous preparation of glyoxylate synthetase from greening potato tubers was used to study the functional role of disulphide groups, lysine and tryptophan residues in enzyme catalysis. The formation of a thioisoindole derivative was demonstrated by spectral analysis of the reduced and o-phthalaldehyde-treated enzymes. o-Phthalaldehyde modification resulted in about a 25 % loss of tryptophan emission at 336 nm and the appearance of a 410-nm emission peak characteristic of a thioisoindole. Ferrous iron was capable of generating thiol groups and addition of substrate resulted in a faster disappearance of these thiols. The optimal time for maximum glyoxylate synthesis by glyoxylate synthetase paralleled the disappearance of these thiols. Involvement of lysine and tryptophan residues in the enzyme reaction was demonstrated by the inhibition of activity by pyridoxal 5′-phosphate and dimethyl(2-hydroxy 5-nitrobenzyl) sulphonium bromide (DMHNB), respectively. Pyridoxal phosphate strongly and reversibly inhibited glyoxylate synthetase, and substrate and metal ion provided significant protection against inhibition. The results suggest that the lysine residue may be at or near the active binding site. The lysyl residue formed a Schiff base with pyridoxal phosphate which was stabilised by NaBH4. Glyoxylate synthetase was also irreversibly inactivated by a tryptophan selective reagent, DMHNB, while substrate provided substantial protection against inactivation. Kinetic analysis and correlation of the spectral data at 410 nm indicated that complete inactivation by DMHNB resulted from the modification of 5 tryptophan residues/subunit, of which one was essential for activity. The available evidence suggests a possible concerted action of enzyme disulphides, ferrous iron, lysine and aromatic amino acid residues in the synthesis of glyoxylate by this enzyme.  相似文献   

7.
3-Methylanthranilic acid (3MA) inhibits growth and causes derepression of the tryptophan biosynthetic enzymes in wild-type strains of Escherichia coli. Previous reports attributed this effect to an inhibition of the conversion of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate to indole-3-glycerol phosphate and a consequent reduction in the concentration of endogenous tryptophan. Our studies have shown that 3MA-resistant mutants linked to the tryptophan operon have a feedback-resistant anthranilate synthetase; mutants with an altered indole-3-glycerol phosphate synthetase were not found. 3MA or 7-methylindole can be metabolized to 7-methyltryptophan, and 3MA, 7-methylindole, and 7-methyltryptophan lead to derepression of the tryptophan operon. Furthermore, 3MA-resistant mutants are also resistant to 7-methylindole derepression. These results strongly suggest that the primary cause of derepression by 3MA is through its conversion to 7-methyltryptophan, which can inhibit anthranilate synthetase, thereby decreasing the concentration of endogenous tryptophan. Unlike 5- or 6-methyltryptophan, 7-methyltryptophan does not appear to function as an active corepressor.  相似文献   

8.
After prolonged cultivation in the presence of increasing amounts of carboxyl-substituted tryptophan analogs (tryptamine and tryptophanol), cell lines resistant to high concentrations of these compounds were obtained. The initial culture was the Madin-Darby line of spontaneously transformed bovine kidney cells. In the resistant lines the amount of tryptophanyl-tRNA synthetase (E. C. 6.1.1.2) is manyfold increased as shown by two criteria: (i) enzymatic activity (ATP-PPi isotopic exchange) per mg of protein, (ii) binding of in vivo 35S-labeled proteins to polyclonal antibodies against tryptophanyl-tRNA synthetase. It was shown that tryptophanyl-tRNA synthetase is phosphorylated in vivo, and the degree of phosphorylation of the enzyme in initial cells seems to be higher then in the resistant ones. The Km value for tryptophan is not significantly changed for the enzyme from resistant cells. The permeability for tryptophan and its analogs is reduced in the resistant cells. It is proposed that the acquisition of the resistance against tryptophan analogs are due to alterations at the genomic level (for example, gene amplification etc.).  相似文献   

9.
A tryptophan-requiring auxotroph of Agmenellum quadruplicatum strain BG1, a species of blue-green bacteria, was isolated by means of a nitrosoguanidine-penicillin procedure. Its growth characteristics were determined, and the enzymological block was identified in the A activity of tryptophan synthetase. Starvation of the auxotroph for tryptophan resulted in the derepression of the synthesis of all five enzymes. The first four enzymes derepressed 2- to 3-fold, and tryptophan synthetase B derepressed 20-fold. In the parental prototroph, BG1, anthranilate synthetase was active in crude extracts with ammonia as the amino donor reactant, but not with glutamine.  相似文献   

10.
The formation of the five tryptophan biosynthetic enzymes of Neurospora crassa was shown to be derepressed in histidine-starved cells. This histidine-mediated derepression was not due to a lowered intracellular concentration of tryptophan in these cells. Furthermore, histidine-mediated derepression of tryptophan enzymes was found to be coordinate and not subject to reversal by tryptophan of either exogenous or biosynthetic origin. The synthesis of tryptophan enzymes also was found to be coordinate in cells which were not histidine-starved. Although histidine is clearly involved in regulating the synthesis of tryptophan enzymes, it did not prevent either tryptophan-mediated derepression of tryptophan enzymes or indole-3-glycerol phosphate-mediated derepression of tryptophan synthetase.  相似文献   

11.
3-Deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase and anthranilate synthetase are key regulatory enzymes in the aromatic amino acid biosynthetic pathway. The DAHP synthetase activity of Hansenula polymorpha was subject to additive feedback inhibition by phenylalanine and tyrosine but not by tryptophan. The synthesis of DAHP synthetase in this yeast was not repressed by exogenous aromatic amino acids, singly or in combinations. The activity of anthranilate synthetase was sensitive to feedback inhibition by tryptophan, but exogenous tryptophan did not repress the synthesis of this enzyme. Nevertheless, internal repression of anthranilate synthetase probably exists, since the content of this enzyme in H. polymorpha strain 3-136 was double that in the wild-type and less sensitive 5-fluorotryptophan-resistant strains. The biochemical mechanism for the overproduction of indoles by the 5-fluorotryptophan-resistant mutants was due primarily to a partial desensitization of the anthranilate synthetase of these strains to feedback inhibition by tryptophan. These results support the concept that inhibition of enzyme activities rather than enzyme repression is more important in the regulation of aromatic amino acid biosynthesis in H. polymorpha.  相似文献   

12.
Anthranilate synthetase, phosphoribosyltransferase, phosphoribosyl anthranilate isomerase, and indoleglycerol phosphate synthetase were examined in partially purified extracts of the monocotyledon, Zea mays and the dicotyledon, Pisum sativum. The plant extracts were chromatographed on DEAE-cellulose and Sephadex G150. The molecular weights of the enzymes were determined and found to be similar to those observed for many bacteria. None of the plant tryptophan enzyme activities was aggregated in vitro as is also the case with most bacteria. This is in contrast with the complex aggregation patterns observed in other eucaryotic organisms that have been examined (fungi and Euglena gracilis). The tryptophan enzymes from peas and corn were generally similar but some differences in stability were observed.  相似文献   

13.
A tryptophan auxotroph of Neurospora crassa, trp-5, has been characterized as a mutant with a deficient tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.2) activity. When assayed by tryptophanyl-tRNA formation, extracts of the mutant have less than 5% of the wild-type specific activity. The adenosine triphosphate-pyrophosphate exchange activity is at about half the normal level. In the mutant derepressed levels of anthranilate synthetase and tryptophan synthetase were associated with free tryptophan pools equal to or higher than those found in the wild type. We conclude that a product of the normal tryptophanyl-tRNA synthetase, probably tryptophanyl-tRNA, rather than free tryptophan, participates in the repression of the tryptophan biosynthetic enzymes.  相似文献   

14.
1. Tryptophan synthetase B of three strains of Bacillus subtilis was prepared from ;exo-protoplastic' and ;endo-protoplastic' fractions; the enzyme from ;exo-protoplastic' fraction was purified 30- to 120-fold by ammonium sulphate precipitation and DEAE-cellulose column chromatography; the latter step separated this enzyme from tryptophan synthetase A, tryptophanase and proteolytic enzymes, but the purified preparations were not stable. 2. The activity of tryptophan synthetase B did not depend on the presence of tryptophan synthetase A. 3. Tryptophan synthetases B of the strains tested differed in their utilization of 2- and 7-methylindole as compared with indole; this suggests that these tryptophan synthetases B are not identical.  相似文献   

15.
The 4′-phosphopantetheine prosthetic group of holoacyl carrier protein (holoACP) in Escherichia coli turns over independently of the apoprotein, due to the activities of holoACP hydrolase and holoACP synthetase. There is no measurable pool of apoACP in pantothenate-supplemented cells of a pantothenate-requiring mutant, but extended incubation on deficient medium, with exhaustion of cellular coenzyme A (CoA), leads to slow accumulation of the apoprotein. It is concluded that, although the activities of the synthetase and hydrolase are about equal in crude extracts, in the cells an excess synthetase activity maintains ACP completely as holoACP unless cells are artifically depleted of CoA, the donor of the 4′-phosphopantetheine group. About 20% of the holoACP in normal cells was designated as “holoACP esters,” being resistant to S-alkylation unless first treated with neutral hydroxylamine; this proportion increased to about 80% in pantothenate starvation. A preliminary attempt to identify acyl portions from this material was unsuccessful. The proportion of this material was not elevated in other strains under conditions which show feedback inhibition of fatty acid biosynthesis in vivo.  相似文献   

16.
Tryptophan Synthetic Pathway and Its Regulation in Chromobacterium violaceum   总被引:13,自引:11,他引:2  
Extracts of Chromobacterium violaceum catalyzed all of the reactions involved in synthesizing tryptophan from chorismic acid. Tryptophan auxotrophs which had lost any of these activities did not produce the characteristic purple pigment, violacein, when grown on a medium in which tryptophan was limiting. Gel filtration of extracts allowed us to estimate molecular weights for the tryptophan enzymes. All of the enzymes appeared to have molecular weights below 100,000. No enzymes were observed to occur in aggregates. The specific activities of the enzymes of the tryptophan pathway did not change when mutants were grown under conditions of limiting or excess tryptophan. The first enzyme in the pathway, anthranilate synthetase, was subject to feedback control by the end product, tryptophan. Tryptophan acted as a noncompetitive inhibitor with respect to glutamine, one of the substrates for anthranilate synthetase, and as a competitive inhibitor of the reaction when chorismate, the other substrate, was varied. The nonlinearity observed in the Lineweaver-Burk plot in the latter case suggests that there may be more than one chorismate-binding site on anthranilate synthetase.  相似文献   

17.
In an analysis of the effects of various tryptophan and indole analogues in Saccharomyces cerevisiae we determined the mechanisms by which they cause growth inhibition: 4-Methyltryptophan causes a reduction in protein synthesis and a derepression of the tryptophan enzymes despite of the presence of high internal levels of tryptophan. This inhibition can only be observed in a mutant with increased permeability to the analogue. These results are consistent with but do not prove an interference of this analogue with the charging of tryptophan onto tRNA. 5-Methyltryptophan causes false feedback inhibition of anthranilate synthase, the first enzyme of the tryptophan pathway. This inhibits the further synthesis of tryptophan and results in results in tryptophan limitation, growth inhibition and derepression of the enzymes. Derepression eventually allows wild type cells to partially overcome the inhibitory effect of the analogue. 5-Fluoroindole is converted endogenously to 5-fluorotryptophan by tryptophan synthase. Both endogenous and externally supplied 5-fluorotryptophan are incorporated into protein. This leads to intoxication of the cells due to the accumulation of faulty proteins. 5-Fluorotryptophan also causes feedback inhibition of anthranilate synthase and reduces the synthesis of tryptophan which would otherwise compete with the analogues in the charging reaction. Indole acrylic acid inhibits the conversion of indole to tryptophan by tryptophan synthase. This results in a depletion of the tryptophan pool which, in turn, causes growth inhibition and derepression of the tryptophan enzymes.Abbreviations cpm counts per minute - OD optical density at 546 nm - TCA trichloro acetic acid - tRNA transfer ribonucleic acid; trp1 to trp5 refer to the structural genes for the corresponding tryptophan biosynthetic enzymes - trpl res. trp1± refer to mutant strains synthesizing completely resp. partially defective enzymes  相似文献   

18.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

19.
The enhancement of ergot alkaloid production by tryptophan and its analogues in both normal and high-phosphate cultures is more directly related to increased dimethylallyltryptophan (DMAT) synthetase activity rather than to a lack of regulation of the tryptophan biosynthetic enzymes. Thiotryptophan [beta-(1-benzo-thien-3-yl)-alanine] is rather ineffective in the end product regulation of tryptophan biosynthesis, whereas tryptophan and 5-methyltryptophan are potent effectors. The presence of increased levels of DMAT synthetase in ergot cultures supplemented with tryptophan or thiotryptophan, and to a lesser extent with 5-methyltryptophan, suggests that the induction effect involves de novo synthesis of the enzyme. Thiotryptophan and tryptophan but not 5-methyltryptophan can overcome the block of alkaloid synthesis by inorganic phosphate. The results with thiotryptophan indicate that the phosphate effect cannot be explained merely on the basis of a block of tryptophan synthesis.  相似文献   

20.
Lysates of Escherichia coli Ymel obtained from cultures grown in the absence of tryptophan in minimal medium supplemented with 0.1% casein hydrolysate show an approximate fivefold increase in steady-state specific activity of both anthranilate synthetase and tryptophan synthetase A protein relative to cultures grown in nonsupplemented medium. In the presence of repressing levels of exogenous tryptophan, growth of cultures in casein hydrolysate-supplemented medium results in a noncoordinate enhancement of repression of 10-fold for anthranilate synthetase and twofold for tryptophan synthetase A protein. Similar, but less pronounced, effects are shown for strain W3110. Strains possessing tryptophan regulator gene mutations do not exhibit this first effect, but do yield an approximate twofold decrease in specific activity of both enzymes when grown in medium supplemented with tryptophan and casein hydrolysate. A stimulation of derepression of both enzymes in strain Ymel equivalent to that induced by casein hydrolysate can be reproduced by growth in minimal medium supplemented with threonine, phenylalanine, tyrosine, serine, glutamic acid, and glutamine. Doubling time in this medium is not significantly different from that in minimal medium. An enhancement of repression which partially mimics that observed on growth in medium supplemented with tryptophan plus casein hydrolysate is obtained when Ymel is grown on medium supplemented with tryptophan plus methionine. Threonine or phenylalanine plus tyrosine as separate medium supplements are independently capable of producing a 1.4-fold or 3.4-fold stimulation, respectively, but in combination only the phenylalanine plus tyrosine effect is manifested unless serine and glutamic acid or glutamine are included. Our data show that expression of the tryptophan biosynthetic enzymes can be significantly influenced in vivo as a result of growth in medium supplemented with a variety of amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号