首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major lens protein alpha-crystallin is composed of two related types of subunits, alphaA- and alphaB-crystallin, of which the former is essentially lens-restricted, while the latter also occurs in various other tissues. With regard to their respective chaperone capacities, it has been reported that homomultimeric alphaA-crystallin complexes perform better in preventing thermal aggregation of proteins, while alphaB-crystallin complexes protect more efficiently against reduction-induced aggregation of proteins. Here, we demonstrate that this seeming discrepancy is solved when the reduction assay is performed at increasing temperatures: above 50 degrees C alphaA- performs better than alphaB-crystallin also in this assay. This inversion in protective capacity might relate to the greater resistance of alphaA-crystallin to heat denaturation. Infrared spectroscopy, however, revealed that this is not due to a higher thermostability of alphaA-crystallin's secondary structure. Also the accessible hydrophobic surfaces do not account for the chaperoning differences of alphaA- and alphaB-crystallin, since regardless of the experimental temperature alphaB-crystallin displays a higher hydrophobicity. It is argued that the greater complex stability of alphaA-crystallin, as evident upon urea denaturation, and the higher chaperone capacity of alphaB-crystallin at physiological temperatures reflect the evolutionary compromise to obtain an optimal functioning of heteromeric alpha-crystallin as a lens protein.  相似文献   

2.
Calf lens A-crystallin isolated by reversed-phase HPLC demonstrates a slightly more hydrophobic profile than B-crystallin. Fluorescent probes in addition to bis-ANS, like cis-parinaric acid (PA) and pyrene, show higher quantum yields or Ham ratios when bound to A-crystallin than to B-crystallin at room temperature. Bis-ANS binding to both A- and B-crystallin decreases with increase in temperature. At room temperature, the chaperone-like activity of A-crystallin is lower than that of B-crystallin whereas at higher temperatures, A-crystallin shows significantly higher protection against aggregation of substrate proteins compared to B-crystallin. Therefore, calf lens A-crystallin is more hydrophobic than B-crystallin and chaperone-like activity of -crystallin subunits is not quantitatively related to their hydrophobicity.  相似文献   

3.
The chaperone-like activity and the oligomeric state of alphaB-crystallin were studied at different temperatures and in the presence of urea and thiocyanate. The activity, assessed measuring the ability of alphaB-crystallin to prevent the aggregation of denatured insulin, strongly depends on temperature. While a significant activity increase was detected at 42 degrees C, the presence of urea and thiocyanate does not affect the protein activity in an irreversible way. In-solution SAXS measurements performed in the same experimental conditions showed that alphaB-crystallin forms near-spherical, hollowed, polydisperse oligomers, whose dimensions change above 42 degrees C. Moreover, in the presence of urea and thiocyanate, a global fit analysis confirms the high stability of alphaB-crystallin assemblies in relationship with their variable quaternary structure. In particular, the changes in the inner radius as well as the thickness and dispersion of the protein shell, account for the preservation of the chaperone-like activity.  相似文献   

4.
Alpha-crystallin is a member of the family of small heat-shock proteins (sHSP) and is composed of two subunits, alphaA-crystallin and alphaB-crystallin, which exhibit molecular chaperone-like properties. In a previous study, we found that residues 70-88 in alphaA-crystallin can function like a molecular chaperone by preventing the aggregation and precipitation of denaturing substrate proteins [Sharma, K. K., et al. (2000) J. Biol. Chem. 275, 3767-3771]. In this study, we show that the complementary sequence in alphaB-crystallin, residues 73-92 (DRFSVNLDVKHFSPEELKVK), is the functional chaperone site of alphaB-crystallin. Like the mini-alphaA-crystallin chaperone, the mini-alphaB-crystallin chaperone interacts with 1,1'-bi(4-anilino) naphthalene-5,5'-disulphonic acid (bis-ANS) and also possesses significant beta-sheet and random coil structure. Deletion of four residues (DRFS) from the N-terminus or deletion of C-terminus LKVK residues from the 73-92 peptide abolishes the chaperone-like activity against denaturing alcohol dehydrogenase. However, removal of DRFS or HFSPEELKVK is necessary to completely abolish the antiaggregation property of the peptide in insulin reduction assay. Substitution of Asp at a site corresponding to D80 in alphaB-crystallin with d-Asp or beta-Asp results in a significant loss of chaperone-like activity. Kynurenine modification of His in the peptide abolishes the antiaggregation property of the mini-chaperone. These data suggest that the 73-92 region in alphaB-crystallin is one of the substrate binding sites during chaperone activity.  相似文献   

5.
alphaB-crystallin is a small heat shock protein that shows chaperone-like activity, as it protects the aggregation of denatured proteins. In this work, the possible relationships between structural characteristics and the biological activity of alphaB-crystallin were investigated on the native protein and on the protein undergoing the separate effects of metal ligation and temperature. The chaperone-like activity of alphaB-crystallin increased in the presence of zinc and when temperature was increased. By using fluorescent probes to monitor hydrophobic surfaces on alphaB-crystallin, it was found that exposed hydrophobic patches on the protein surface increased significantly both in the presence of zinc and when the temperature was raised from 25 to 37 degrees C. The zinc-induced increased exposure of lipophilic residues is in agreement with theoretical calculations performed on 3D-models of monomeric alphaB-crystallin, and may be significant to its increased biological activity.  相似文献   

6.
Lens alphaA- and alphaB-crystallin have been reported to act differently in their protection against nonthermal destabilization of proteins. The nature of this difference, however, is not completely understood. Therefore we used a combination of thermally and solvent-induced structural changes to investigate the difference in the secondary, tertiary and quaternary structures of alphaA- and alphaB-crystallin. We demonstrate the relationship between the changes in the tertiary and quaternary structures for both polypeptides. Far-ultraviolet circular dichroism revealed that the secondary structure of alphaB-crystallin is more stable than that of alphaA-crystallin, and the temperature-induced secondary structure changes of both polypeptides are partially reversible. Tryptophan fluorescence revealed two distinct transitions for both alphaA- and alphaB-crystallin. Compared to alphaB-crystallin, both transitions of alphaA-crystallin occurred at higher temperature. The changes in the hydrophobicity are accompanied by changes in the quaternary structure and are biphasic, as shown by bis-1-anilino-8-naphthalenesulfonate fluorescence and sedimentation velocity. These phenomena explain the difference in the chaperone capacity of alphaA- and alphaB-crystallin carried out at different temperatures. The quaternary structure of alpha-crystallin is more stable than that of alphaA- and alphaB-crystallin. The latter has a strong tendency to dissociate under thermal or solvent destabilization. This phenomenon is related to the difference in subunit organization of alphaA- and alphaB-crystallin where both hydrophobic and ionic interactions are involved. We find that an important subunit rearrangement of alphaA-crystallin takes place once the molecule is destabilized. This subunit rearrangement is a requisite phenomenon for maintaining alpha-crystallin in its globular form and as a stable complex. On the base of our results, we suggest a four-state model describing the folding and dissociation of alphaA- and alphaB-crystallin better than a three-state model [Sun et al. (1999) J. Biol. Chem. 274, 34067-34071].  相似文献   

7.
Saha S  Das KP 《Proteins》2004,57(3):610-617
Alpha-crystallin, the major eye lens protein, exists as a large oligomer of two subunits, alphaA- and alphaB-crystallin. The individual subunits assemble into the oligomer in vitro. It is generally believed that oligomerization is pre-requisite for chaperone function, although there is no hard data available on this subject. We therefore undertook a study using limited tryptic digestion as a tool for examining the relationship between oligomeric size and chaperone activity of recombinant alphaA- and alphaB-crystallin. We showed that tryptic digested fragments of both alphaA- and alphaB-crystallin much smaller than the original subunits retain considerable chaperone activity. Our results indicate that chaperone activity depends more on the sequence of the reduced peptide than on its oligomeric size. The results also suggest that the presence of the alpha-crystallin domain and hydrophobic clefts on the protein surface, which correlate poorly with oligomeric size, are important for chaperone function.  相似文献   

8.
The carboxyl-terminal segment of alpha-crystallin, a major lens protein of all vertebrates, has a short and flexible peptide extension of about 20 amino acid residues that are very susceptible to proteolytic truncation and modifications under physiological conditions. To investigate its role in crystallin aggregation and chaperone-like activity, we constructed a mutant of porcine alphaB-crystallin with C-terminal lysine truncated end, which unexpectedly showed better chaperone-like function than wild-type alphaB-crystallin. From circular dichroism (CD) spectra, we show that the mutant possesses similar secondary and tertiary structures to those of native purified and recombinant alphaB-crystallins. Analytical ultracentrifugation revealed that the truncated mutant was smaller than wild-type alphaB-crystallin in aggregation size and mass. The observed higher thermostability and anti-thermal aggregation propensity of the truncated alphaB-crystallin mutant than wild-type alphaB-crystallin are in contrast to the prevailing notion that mutations at the C-terminal lysines of alphaB-crystallin result in substantial loss of chaperone-like activity, despite the overall preservation of secondary structure. The detailed characterization of the C-terminal deletion mutants may provide some deeper insight into the chaperoning mechanism of the structurally related small heat-shock protein family.  相似文献   

9.
alphaB-crystallin has been demonstrated, in tissue culture experiments, to be a caspase 3 inhibitor; however, no animal model studies have yet been described. Here, we show that morphological abnormalities in lens secondary fiber cells of alphaA-/alphaB-crystallin gene double knockout (DKO) mice are consistent with, and probably result from, elevated DEVDase and VEIDase activities, corresponding to caspase 3 and caspase 6, respectively. Immunofluorescence microscopy revealed an increased amount of caspase 6, and the active form of caspase 3, in specific regions of the DKO lens, coincident with the site of cell disintegration. TUNEL labeling illustrated a higher level of DNA fragmentation in the secondary fiber lens cells of DKO mice, compared with wild-type mice. Using a pull-down assay, we show interaction between caspase 6 and alphaA- but not alphaB-crystallin. These studies suggest that alpha-crystallin plays a role in suppressing caspase activity, resulting in retention of lens fiber cell integrity following degradation of mitochondria and other organelles, which occurs during the apoptosis-like pathway of lens cell terminal differentiation.  相似文献   

10.
alphaA- and alphaB-crystallins are molecular chaperones expressed at low levels in lens epithelial cells, and their expression increases dramatically during differentiation to lens fibers. However, the functions of alphaA- and alphaB-crystallins in lens epithelial cells have not been studied in detail. In this study, the relative ability of alphaA- and alphaB-crystallin, in protecting lens epithelial cells from apoptotic cell death was determined. The introduction of alphaA-crystallin in the transformed human lens epithelial (HLE) B-3 lens epithelial cell line (which expresses low endogenous levels of alphaB-crystallin) led to a nearly complete protection of cell death induced by staurosporine, Fas monoclonal antibody, or the cytokine tumor necrosis factor alpha. To further study the relative protective activities of alphaA- and alphaB-crystallins, we created a cell line derived from alphaA-/-alphaB-/- double knockout mouse lens epithelia by infecting primary cells with Ad12-SV40 hybrid virus. The transformed cell line alphaAalphaBKO1 derived from alphaA/alphaB double knockout cells was transfected with alphaA- or alphaB-crystallin cDNA contained in pCIneo mammalian expression vector. Cells expressing different amounts of either alphaA-crystallin or alphaB-crystallin were isolated. The ability of alphaA- or alphaB-crystallin to confer protection from apoptotic cell death was determined by annexin labeling and flow cytometry of staurosporine- or UVA- treated cells. The results indicate that the anti-apoptotic activity of alphaA-crystallin was two to three-fold higher than that of alphaB-crystallin. Our work suggests that comparing the in vitro annexin labeling of lens epithelial cells is an effective way to measure the protective activity of alphaA- and alphaB-crystallin. Since the expression of alphaA-crystallin is largely restricted to the lens, its greater protective effect against apoptosis suggests that it may play a significant role in protecting lens epithelial cells from stress.  相似文献   

11.
Alpha-crystallin, composed of two subunits, alphaA and alphaB, has been shown to function as a molecular chaperone that prevents aggregation of other proteins under stress conditions. The exposed hydrophobic surfaces of alpha-crystallins have been implicated in this process, but their exact role has not been elucidated. In this study, we quantify the hydrophobic surfaces of alphaA- and alphaB-crystallins by isothermal titration calorimetry using 8-anilino-1-napthalenesulfonic acid (ANS) as a hydrophobic probe and analyze its correlation to the chaperone potential of alphaA- and alphaB-crystallins under various conditions. Two ANS binding sites, one with low and another with high affinity, were clearly detected, with alphaB showing a higher number of sites than alphaA at 30 degrees C. In agreement with the higher number of hydrophobic sites, alphaB-crystallin demonstrated higher chaperone activity than alphaA at this temperature. Thermodynamic analysis of ANS binding to alphaA- and alphaB-crystallins indicates that high affinity binding is driven by both enthalpy and entropy changes, with entropy dominating the low affinity binding. Interestingly, although the number of ANS binding sites was similar for alphaA and alphaB at 15 degrees C, alphaA was more potent than alphaB in preventing aggregation of the insulin B-chain. Although there was no change in the number of high affinity binding sites of alphaA and alphaB for ANS upon preheating, there was an increase in the number of low affinity sites of alphaA and alphaB. Preheated alphaA, in contrast to alphaB, exhibited remarkably enhanced chaperone activity. Our results indicate that although hydrophobicity appears to be a factor in determining the chaperone-like activity of alpha-crystallins, it does not quantitatively correlate with the chaperone function of alpha-crystallins.  相似文献   

12.
Three-dimensional models for alphaB-crystallin and its complex with zinc were obtained by molecular homology modeling and quantum mechanical calculations in order to explain the effect of the metal on the chaperone-like activity of alphaB-crystallin. In fact, measurements of the chaperone-like activity of alphaB-crystallin revealed that it is significantly increased in presence of the zinc. The theoretical models allowed us to estimate the increased exposition of hydrophobic residues caused by the presence of zinc, suggesting a relationship between structural changes and the increased chaperone-like activity.  相似文献   

13.
Partially or completely unfolded polypeptides are highly prone to aggregation due to nonspecific interactions between their exposed hydrophobic surfaces. Extracellular proteins are continuously subjected to stresses conditions, but the existence of extracellular chaperones remains largely unexplored. The results presented here demonstrate that one of the most abundant extracellular proteins, fibrinogen has chaperone-like activity. Fibrinogen can specifically bind to nonnative form of citrate synthase and inhibit its thermal aggregation and inactivation in an ATP-independent manner. Interestingly, fibrinogen maintains thermal-denatured luciferase in a refolding competent state allowing luciferase to be refolded in cooperation with rabbit reticulocyte lysate. Fibrinogen also inhibits fibril formation of yeast prion protein Sup35 (NM). Furthermore, fibrinogen rescues thermal-induced protein aggregation in the plasma of fibrinogen-deficient mice. Our studies demonstrate the chaperone-like activity of fibrinogen, which not only provides new insights into the extracellular chaperone protein system, but also suggests potential diagnostic and therapeutic approaches to fibrinogen-related pathological conditions.  相似文献   

14.
AlphaB-crystallin is a small heat shock protein, showing chaperone-like activity, that is expressed in the lens and in several other tissues. The role of some metal ions in the alphaB-crystallin biology starts to be well documented. In some neuro-degenerative pathologies, like Parkinson and Alzheimer's diseases, alphaB-crystallin is expressed at high levels. In the same pathologies an accumulation of divalent metal cations is observed. In order to investigate the interactions between human alphaB-crystallin and divalent metal ions, the effect of copper, zinc and calcium on the chaperone-like activity of the protein has been studied. Copper and zinc at concentrations 0.1 and 1 mM significantly increase the chaperone-like activity, whereas calcium 1 mM completely inhibits activity. Electron paramagnetic resonance (EPR) and circular dichroism (CD) spectra indicate the possible complex formation between Cu(II) and protein at physiological pH. Molecular modeling calculations, carried out for the probable Cu(II) binding site, suggest that a complex with three histidine residues is possible.  相似文献   

15.
Oxidative stress and Cu2+ have been implicated in several neurodegenerative diseases and in cataract. Oxidative stress, as well as Cu2+, is also known to induce the expression of the small heat shock proteins α-crystallins. However, the role of α-crystallins in oxidative stress and in Cu2+-mediated processes is not clearly understood. We demonstrate using fluorescence and isothermal titration calorimetry that α-crystallins (αA- and αB-crystallin and its phosphorylation mimic, 3DαB-crystallin) bind Cu2+ with close to picomolar range affinity. The presence of other tested divalent cations such as Zn2+, Mg2+, and Ca2+ does not affect Cu2+ binding, indicating selectivity of the Cu2+-binding site(s) in α-crystallins. Cu2+ binding induces structural changes and increase in the hydrodynamic radii of α-crystallins. Cu2+ binding increases the stability of α-crystallins towards guanidinium chloride-induced unfolding. Chaperone activity of αA-crystallin increases significantly upon Cu2+ binding. α-Crystallins rescue amyloid beta peptide, Aβ1-40, from Cu2+-induced aggregation in vitro. α-Crystallins inhibit Cu2+-induced oxidation of ascorbate and, hence, prevent the generation of reactive oxygen species. Interestingly, α-synuclein, a Cu2+-binding protein, does not inhibit this oxidation process significantly. We find that the Cu2+-sequestering (or redox-silencing) property of α-crystallins confers cytoprotection. To the best of our knowledge, this is the first study to reveal high affinity (close to picomolar) for Cu2+ binding and redox silencing of Cu2+ by any heat shock protein. Thus, our study ascribes a novel functional role to α-crystallins in Cu2+ homeostasis and helps in understanding their protective role in neurodegenerative diseases and cataract.  相似文献   

16.
Despite the enormous number of studies demonstrating changes in the chaperone-like activity of α-crystallins in vitro, little is known about how these changes influence life-long lens transparency in vivo. Using the γB-crystallin I4F mutant protein as a target for αA-crystallins, we examined how cataract phenotypes are modulated by interactions between α-crystallins with altered chaperone-like activities and γB-I4F proteins in vivo. Double heterozygous α-crystallin knock-out αA(+/-) αB(+/-) mice with a decreased amount of α-crystallins were used to simulate reduced total α-crystallin chaperone-like activity in vivo. We found that triple heterozygous αA(+/-) αB(+/-) γB(I4F/+) mice developed more severe whole cataracts than heterozygous γB(I4F/+) mice. Thus, total chaperone-like activity of α-crystallins is important for maintaining lens transparency. We further tested whether mutant αA-crystallin Y118D proteins with increased chaperone-like activity influenced the whole cataract caused by the γB-I4F mutation. Unexpectedly, compound αA(Y118D/+) γB(I4F/+) mutant lenses displayed severe nuclear cataracts, whereas the lens cortex remained unaffected. Thus, the synergistic effect of αA-Y118D and γB-I4F mutant proteins is detrimental to the transparency only in the lens core. α-Crystallins with different chaperone-like activities are likely required in the lens cortex and nucleus for maintaining transparency.  相似文献   

17.
The chaperone activity and biophysical properties of recombinant human alphaA- and alphaB-crystallins were studied by light scattering and spectroscopic methods. While the chaperone function of alphaA-crystallin markedly improves with an increase in temperature, the activity of alphaB homopolymer appears to change very little upon heating. Compared with alphaB-crystallin, the alphaA-homopolymer is markedly less active at low temperatures, but becomes a more active species at high temperatures. At physiologically relevant temperatures, the alphaB homopolymer appears to be modestly (two times or less) more potent chaperone than alphaA homopolymer. In contrast to very similar thermotropic changes in the secondary structure of both homopolymers, alphaA- and alphaB-crystallins markedly differ with respect to the temperature-dependent surface hydrophobicity profiles. Upon heating, alphaA-crystallin undergoes a conformational transition resulting in the exposure of additional hydrophobic sites, whereas no such transition occurs for alphaB-crystallin. The correlation between temperature-dependent changes in the chaperone activity and hydrophobicity properties of the individual homopolymers supports the view that the chaperone activity of alpha-crystallin is dependent on the presence of surface-exposed hydrophobic patches. However, the present data also show that the surface hydrophobicity is not the sole determinant of the chaperone function of alpha-crystallin.  相似文献   

18.
AlphaB-crystallin is a member of the sHsp (small heat-shock protein) family that prevents misfolded target proteins from aggregating and precipitating. Phosphorylation at three serine residues (Ser19, Ser45 and Ser59) is a major post-translational modification that occurs to alphaB-crystallin. In the present study, we produced recombinant proteins designed to mimic phosphorylation of alphaB-crystallin by incorporating a negative charge at these sites. We employed these mimics to undertake a mechanistic and structural investigation of the effect of phosphorylation on the chaperone activity of alphaB-crystallin to protect against two types of protein misfolding, i.e. amorphous aggregation and amyloid fibril assembly. We show that mimicking phosphorylation of alphaB-crystallin results in more efficient chaperone activity against both heat-induced and reduction-induced amorphous aggregation of target proteins. Mimick-ing phosphorylation increased the chaperone activity of alphaB-crystallin against one amyloid-forming target protein (kappa-casein), but decreased it against another (ccbeta-Trp peptide). We observed that both target protein identity and solution (buffer) conditions are critical factors in determining the relative chaperone ability of wild-type and phosphorylated alphaB-crystallins. The present study provides evidence for the regulation of the chaperone activity of alphaB-crystallin by phosphorylation and indicates that this may play an important role in alleviating the pathogenic effects associated with protein conformational diseases.  相似文献   

19.
AlphaA-crystallin (alphaAC), a major component of eye lens, exhibits chaperone-like activity and is responsible for maintaining eye lens transparency. Synthetic peptides which corresponded to the putative substrate-binding site of alphaAC have been reported to prevent aggregation of proteins [Sharma, K. K., et al. (2000) J. Biol. Chem. 275, 3767-3771]. In this study, we found that these peptides, alphaAC(70-88), the peptide corresponding to amino acids 70-88 of alphaAC (KFVIFLDVKHFSPEDLTVK), and alphaAC(71-88), suppressed the amyloid fibril formation of amyloid beta protein (Abeta). On the other hand, while alphaAC(71-88) exhibited chaperone-like activity toward insulin, alphaAC(70-88) and alphaAC(70-88)K70D promoted rapid growth of aggregates consisting of insulin and these peptides in their solution mixtures. Interestingly, we found that alphaAC(71-88) itself can also form amyloid fibrils. It is possible that the chaperone-like activity of the alphaAC peptides is potentially related to their propensity for amyloid fibril formation. Analysis of variants of the alphaAC peptides suggested that F71 is important for amyloid formation, and interestingly, this same residue has previously been found to be essential for chaperone-like activity. Amyloid fibril formation was also observed with the shorter peptide, alphaAC(70-76)K70D, showing that the ability to form amyloid fibrils is maintained even with significant deletion of the C-terminal sequence. The formation of amyloid fibril was suppressed in alphaAC(70-88), suggesting that the K70 in the substrate binding site may play a role in suppressing the amyloid fibril formation of alphaAC, which agreed with recent proposals about the presence of an aggregation suppressor in the region flanking aggregation-prone hydrophobic sequences.  相似文献   

20.
alpha-Crystallin, the major protein component of the vertebrate lens, is thought to play a critical role in the maintenance of transparency through its ability to inhibit stress-induced protein aggregation. However, during aging and cataract formation the amount of membrane-bound alpha-crystallin increases significantly while high molecular weight complexes (HMWCs) comprised of alpha-crystallin and other lens crystallins accumulate. These and other recent data suggest a possible link between cataract formation, the formation of high molecular weight alpha-crystallin aggregates, and the progressive increase in membrane association of alpha-crystallin. To better understand these processes, we characterized the chaperone-like activity (CLA) and subunit exchange of membrane bound alpha-crystallin. In addition, we measured the membrane binding properties of in vitro constituted HMWCs to understand the mechanism by which increased alpha-crystallin is bound to the membrane of old and cataractous lens cells in vivo. Membrane-associated alpha-crystallin complexes have measurably reduced CLA compared to complexes in solution; however, membrane binding does not alter the time required for alpha-crystallin complexes to reach subunit exchange equilibrium. In addition, HMWCs prepared in vitro have a profoundly increased membrane binding capacity as compared to native alpha-crystallin. These results are consistent with a model in which increased membrane binding of alpha-crystallin is an integral step in the pathogenesis of many forms of cataracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号