首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transport properties of the rabbit peritoneal polymorphonuclear leukocyte (PMN) plasma membrane to Na+, K+, and Ca2+ have been characterized. The use of a silicone oil centrifugation technique provided a rapid and reliable method for measuring ion fluxes in these cells. Na+ and K+ movements across PMN membranes were found to be rapid. The value for the unifirectional steady-state fluxes (in meq/liter cell X min) were of the order of 3.0 for Na+ and 7.4 for K+. Ouabian inhibited both K+ influx and Na+ efflux, the latter being also dependent on the presence of extracellular potassium. The rate constant (in min-1) for 45Ca influx was found to be .05 and that for 45Ca efflux .04. The synthetic chemotactic factor formyl-methionyl-leucyl-phenylalanine (FMLP) was found to affect the fluxes of Na+, K+, and Ca2+ at concentrations as low as 10(-10)M. FMLP induced a large and rapid increase in the permeability of the PMN plasma membrane to 22Na. Smaller and delayed enhancements of 42K influx and 22Na efflux were also noted. Some evidence that the latter findings are a consequence of the increased 22Na influx is presented. 45Ca influx and efflux were also stimulated by FMLP. In the presence of 0.25 mM extracellular calcium, FMLP induced an increase in the steady-state level of cell-associated 45Ca. In the presence of .01 mM extracellular calcium, however, a transient decrease in the steady-state level of cell-associated 45Ca was induced by FMLP. The curves relating the concentration of FMLP to its effects on cation fluxes are very similar to those found for its enhancement of migration.  相似文献   

2.
The preincubation of rabbit neutrophils with the chemotactic factor F-Met-Leu-Phe and the subsequent addition of cytochalasin B has previously been shown to induce a time, concentration and calcium dependent loss of secretory responsiveness in neutrophils. This has been termed desensitization. The results reported here first confirm that lysosomal enzyme release from neutrophils will still occur in the absence of extracellular calcium. In addition, a time dependent decrease in the magnitude of the cytochalasin B induced influxes of 45Ca and 22Na was found upon preincubation with F-Met-Leu-Phe. In the presence of extracellular Ca2+, this decrease in ionic responsiveness reaches a maximum by five minutes preincubation with F-Met-Leu-Phe. In the absence of added extracellular Ca2+ an initial and rapid (less than 1 minute) loss of ionic responsiveness is followed by partial recovery as the length of the preincubation with the chemotactic factor is increased from one to five minutes. These changes in ionic responses correspond exactly to the changes in secretory behavior of the neutrophils. Desensitization can thus be explained on the same ionic basis as that underlying the secretory response of the neutrophils. In addition, these results provide information about the sequence of events involved in the cytochalasin B and chemotactic factor induced release of lysosomal enzymes in neutrophils.  相似文献   

3.
Mouse islets were used to define the glucose-dependence and extracellular Ca2+ requirement of muscarinic stimulation of pancreatic beta-cells. In the presence of a stimulatory concentration of glucose (10 mM) and of Ca2+, acetylcholine (0.1-100 microM) accelerated 3H efflux from islets preloaded with myo-[3H]inositol. It also stimulated 45Ca2+ influx and efflux, 86Rb+ efflux and insulin release. In the absence of Ca2+, only 10-100 microM-acetylcholine mobilized enough intracellular Ca2+ to trigger an early but brief peak of insulin release. At a non-stimulatory concentration of glucose (3 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ and 86Rb+ efflux in the presence and absence of extracellular Ca2+. However, only 100 microM-acetylcholine marginally increased 45Ca2+ influx and caused a small, delayed, stimulation of insulin release, which was abolished by omission of Ca2+. At a maximally effective concentration of glucose (30 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ influx and efflux only slightly, but markedly amplified insulin release. Again, only 100 microM-acetylcholine mobilized enough Ca2+ to trigger a peak of insulin release in the absence of Ca2+. The results thus show that only high concentrations of acetylcholine (greater than or equal to 10 microM) can induce release at low glucose or in a Ca2+-free medium. beta-Cells exhibit their highest sensitivity to acetylcholine in the presence of Ca2+ and stimulatory glucose. Under these physiological conditions, the large amplification of insulin release appears to be the result of combined effects of the neurotransmitter on Ca2+ influx, on intracellular Ca2+ stores and on the efficiency with which Ca2+ activates the releasing machinery.  相似文献   

4.
The tyrosine kinase inhibitor genistein (5-200 microM) suppressed Ca(2+)-dependent fMLP (1 microM) and ATP (100 microM)-induced release of the lysosomal enzyme, beta-glucuronidase from neutrophil-like HL-60 granulocytes. Agonist-induced Ca2+ mobilization resulted from the release of intracellular Ca2+ stores and the influx of extracellular Ca2+. Genistein (200 microM) suppressed fMLP (1 microM) and ATP (100 microM)-induced Ca2+ mobilization, by 30-40%. Ca2+ release from intracellular stores was unaffected by genistein, however, genistein abolished agonist-induced Ca2+ (Mn2+) influx. Consistent with these findings, genistein (200 microM) or removal of extracellular Ca2+ (EGTA 1 mM), inhibited Ca(2+)-dependent agonist-induced beta-glucuronidase release by similar extents (about 50%). In the absence of extracellular Ca2+, genistein had a small additional inhibitory effect on fMLP and ATP-induced beta-glucuronidase release, suggesting an additional inhibitory site of action. Genistein also abolished store-operated (thapsigargin-induced) Ca2+ (Mn2+) influx. Neither fMLP nor ATP increased the rate of Mn2+ influx induced by thapsigargin (0.5 microM). These data indicate that agonist-induced Ca2+ influx and store-operated Ca2+ influx occur via the same genistein-sensitive pathway. Activation of this pathway supports approximately 50% of lysosomal enzyme release induced by either fMLP or ATP from HL-60 granulocytes.  相似文献   

5.
We examined the role of the monovalent cations Na+ and K+ in the events encompassing the release of O-2 by alveolar macrophages after stimulation with formyl methionyl phenylalanine (FMP). This was accomplished by determining the effect of changing the extracellular [Na+] and/or [K+] on FMP-stimulated O-2 production; and measuring 22Na+, 42K+ and 86Rb+ influx and efflux and intracellular [K+] for control and FMP-stimulated alveolar macrophages. Stimulated O-2 production was relatively insensitive to changes in extracellular K+ or Na+ concentrations until the [Na+] was decreased below 35 mM. At 4 mM [Na+], the rate of O-2 production remained at 75% of the maximal rate observed at physiological concentrations of [Na+]. Both influx and efflux of 22Na+ were stimulated above control rates by FMP. The increased rates of fluxes lasted for a few minutes suggesting a transient increase in membrane permeability to Na+. Ouabain partially inhibited 22Na+ efflux but had no effect on O-2 release. The influx of 86Rb+ and 42K+ was not altered by the addition of FMP but was virtually abolished in the presence of 10 microM ouabain or 1 mM quinine. In the presence of extracellular calcium, FMP-stimulated a prolonged (greater than 20 minutes) increase in 86Rb+ or 42K+ efflux which was inhibitable by 1 mM quinine. In the absence of extracellular calcium, FMP stimulation of K+ efflux was greatly diminished and was not affected by quinine, although quinine still inhibited O-2 production under these conditions. It was also observed that there was a loss of intracellular K+ when cells were stimulated by FMP in the presence of Ca+2, but not in the absence of Ca+2. Taken together, these results suggest a minimal direct role, if any, for K+ in the events that lead to FMP-stimulated O-2 release by alveolar macrophages.  相似文献   

6.
The ability of C5a to stimulate lysosomal enzyme release and 45Ca2+ efflux from rabbit neutrophils was studied. C5a stimulated beta-glucuronidase release from cytochalasin B-treated neutrophils either in the presence or absence of extracellular calcium. Depletion of cell calcium by pretreatment with the calcium ionophore A23187 blocked both the ability of C5a to elicit enzyme release in the absence of extracellular calcium and its ability to stimulate 45Ca2+ efflux. Both actions were dose-dependent over the same concentration range (10(-8)-10(-6) M ionophore A23187). In contrast, ionophore pretreatment had no effect on C5a-stimulated enzyme release in the presence of extracellular calcium. These results suggest that (a) release of cell calcium is required for enzyme secretion in the absence of extracellular calcium, and (b) C5a can trigger near-maximal enzyme release by using calcium from either of two sources: the extracellular space or an intracellular site.  相似文献   

7.
The effects of acute omission of extracellular Na+ on pancreatic B-cell function were studied in mouse islets, using choline and lithium salts as impermeant and permeant substitutes, respectively. In the absence of glucose, choline substitution for Na+ hyperpolarized the B-cell membrane, inhibited 86Rb+ and 45Ca2+ efflux, but did not affect insulin release. In contrast, Li+ substitution for Na+ depolarized the B-cell membrane and caused a Ca2+-independent, transient acceleration of 45Ca2+ efflux and insulin release. Na+ replacement by choline in the presence of 10 mM glucose and 2.5 mM Ca2+ again rapidly hyperpolarized the B-cell membrane. This hyperpolarization was then followed by a phase of depolarization with continuous spike activity, before long slow waves of the membrane potential resumed. Under these conditions, 86Rb+ efflux first decreased before accelerating, concomitantly with marked and parallel increases in 45Ca2+ efflux and insulin release. In the absence of Ca2+, 45Ca2+ and 86Rb+ efflux were inhibited and insulin release was unaffected by choline substitution for Na+. Na+ replacement by Li+ in the presence of 10 mM glucose rapidly depolarized the B-cell membrane, caused an intense continuous spike activity, and accelerated 45Ca2+ efflux, 86Rb+ efflux and insulin release. In the absence of extracellular Ca2+, Li+ still caused a rapid but transient increase in 45Ca2+ and 86Rb+ efflux and in insulin release. Although not indispensable for insulin release, Na+ plays an important regulatory role in stimulus-secretion coupling by modulating, among others, membrane potential and ionic fluxes in B-cells.  相似文献   

8.
Isometric force and 45Ca efflux from the sarcoplasmic reticulum were measured at 19 degrees C in frog skeletal muscle fibers skinned by microdissection. After Ca2+ loading, application of the ionophores monensin, an Na+(K+)/H+ exchanger, or gramicidin D, an H+ greater than K+ greater than Na+ channel-former, evoked rapid force development and stimulated release of approximately 30% of the accumulated 45Ca within 1 min, whereas CCCP (carbonyl cyanide pyruvate p-trichloromethoxyphenylhydrazone), a protonophore, and valinomycin, a neutral, K+-specific ionophore, did not. When monensin was present in all bathing solutions, i.e., before and during Ca2+ loading, subsequent application failed to elicit force development and to stimulate 45Ca efflux. 5 min pretreatment of the skinned fibers with 50 microM digitoxin, a permeant glycoside that specifically inhibits the Na+,K+ pump, inhibited monensin and gramicidin D stimulation of 45Ca efflux; similar pretreatment with 100 microM ouabain, an impermeant glycoside, was ineffective. Monensin stimulation of 45Ca efflux was abolished by brief pretreatment with 5 mM EGTA, which chelates myofilament-space calcium. These results suggest that: monensin and gramicidin D stimulate Ca2+ release from the sarcoplasmic reticulum that is mediated by depolarization of the transverse tubules, which seal off after sarcolemma removal and form closed compartments; a transverse tubule membrane potential (myofilament space-negative) is maintained and/or established by the operation of the Na+,K+ pump in the transverse tubule membranes and is sensitive to the permeant inhibitor digitoxin; the transverse tubule-mediated stimulation of 45Ca efflux appears to be entirely Ca2+ dependent.  相似文献   

9.
Na+ and K+ are the major extra- and intracellular cations, respectively. We have thus studied the role of these ions on human basophil histamine release by modifying their transmembrane gradients or by increasing membrane ion fluxes using ionophores. 1) When external Na+ (reduced to 4 mM) was replaced by the nonpermeating Na+ substitute N-methyl-D-glucamine, the release of histamine was enhanced in 2 mM Ca2+ (from 37.5 +/- 8.0% in 140 mM Na+ to 68.5 +/- 9.1% in low Na+) and became possible in the presence of low Ca2+ (at 1 microM Ca2+: from 0.6 +/- 0.7% in 140 mM Na+ to 36.2 +/- 8.0% in low Na+); moreover, in low Na+, the release of histamine became partly independent on Ca2+ influx. 2) Increasing the Na+ influx with the cation channel-forming gramicidin D inhibited the release of histamine by 33.2 +/- 13.6% (n = 6) in an external Na(+)-dependent manner. 3) Decreasing K+ efflux using K+ channel blockers (4-aminopyridine, quinine, sparteine) inhibited histamine release in a dose-response manner. 4) The K+ ionophore valinomycin, which increases K+ efflux, slightly enhanced IgE-mediated histamine release when used alone, whereas it potentiated the release of histamine from leukocytes previously treated with 4-aminopyridine by 57.0 +/- 18.6% (n = 7). 5) Decreasing K+ efflux by increasing external K+ inhibited IgE-mediated release in a similar manner as Na+ did. The inhibitory effects of Na+ and high K+ were not additive, thus suggesting that both cations inhibited the release by a common mechanism. In conclusion 1) our data evidence that histamine release from human basophils is inhibited by Na+ influx and potentiated by K+ efflux; 2) they suggest that K+ channels are present on the basophil membrane and that Na+ and K+ fluxes act on histamine release most probably via modulation of membrane potential.  相似文献   

10.
Replacing extracellular Na+ with choline transiently increased cytoplasmic free Ca2+ ([Ca2+]i) more than 5-fold in coronary endothelial cells. Removing external Na+ stimulated 45Ca2+ efflux approximately 4-fold and influx approximately 1.7-fold. The stimulation of efflux was independent of extracellular Ca2+ and the osmotic Na+ substitute. The release of stored Ca2+, rather than Ca2+ influx via Na(+)-Ca2+ exchange, probably causes the increase in [Ca2+]i and 45Ca2+ efflux. Cadmium or decreasing external, not intracellular, pH transiently increased [Ca2+]i. Cd2+ and some other divalent metals also stimulated 45Ca2+ efflux. The potency order of the metals that stimulated efflux was Cd2+ greater than CO2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Incubating the cells with Zn2+ prior to assaying efflux in the absence of Zn2+ strongly inhibited the stimulation of 45Ca2+ efflux by Cd2+, pH 6, and the removal of external Na+ without affecting the stimulation of efflux by ATP. These findings support the hypothesis that certain trace metals or decreasing external Na+ or pH trigger the release of stored Ca2+ by stimulating a cell surface "receptor."  相似文献   

11.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

12.
The effects of three types of amino acids on 45Ca2+ fluxes in rat pancreatic islets have been compared. Alanine, a non-insulinotropic neutral amino acid, transported with Na+, increased 45Ca2+ efflux in the presence or in the absence of extracellular Ca2+, but not in the absence of Na+. Its effects in Na+-solutions were practically abolished by 7 mM-glucose. Alanine slightly stimulated 45Ca2+ influx (5 min uptake) only when Na+ was present. Two insulinotropic cationic amino acids (arginine and lysine) triggered similar changes in 45Ca2+ efflux. They accelerated the efflux in the presence of Ca2+ and inhibited the efflux in a Ca2+-free medium, whether glucose was present or not. In an Na+-free Ca2+-medium, arginine and lysine markedly accelerated 45Ca2+ efflux, but this effect was suppressed by 7 mM-glucose. Arginine stimulated 45Ca2+ influx irrespective of the presence or absence of glucose and Na+. Leucine, a neutral insulinotropic amino acid well metabolized by islet cells, inhibited 45Ca2+ efflux from the islets in a Ca2+-free medium; this effect was potentiated by glutamine. In the presence of Ca2+ and Na+, leucine was ineffective alone, but triggered a marked increase in 45Ca2+ efflux when combined with glutamine. In an Na+-free Ca2+-medium, leucine accelerated 45Ca2+ efflux to the same extent with or without glutamine. Leucine also stimulated 45Ca2+ influx in the presence or in the absence of Na+, but its effects were potentiated by glutamine only in the presence of Na+. The results show that amino acids of various types cause distinct changes in 45Ca2+ fluxes in pancreatic islets. Certain of these changes involve an Na+-mediated mobilization of cellular Ca2+ from sequestering sites where glucose appears to exert an opposite effect.  相似文献   

13.
The mechanisms whereby activation of the cyclic AMP-dependent protein kinase A or the Ca2+-phospholipid-dependent protein kinase C amplifies insulin release were studied with mouse islets. Forskolin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) were used to stimulate adenylate cyclase and protein kinase C respectively. The sulphonylurea tolbutamide was used to initiate insulin release in the presence of 3 mM-glucose. Tolbutamide alone inhibited 86Rb+ efflux, depolarized beta-cell membrane, triggered electrical activity, accelerated 45Ca2+ influx and efflux and stimulated insulin release. Forskolin alone only slightly inhibited 86Rb+ efflux, but markedly increased the effects of tolbutamide on electrical activity, 45Ca2+ influx and efflux, and insulin release. In the absence of Ca2+, only the inhibition of 86Rb+ efflux persisted. TPA (100 nM) alone slightly accelerated 45Ca2+ efflux and insulin release without affecting 45Ca2+ influx or beta-cell membrane potential. It increased the effects of tolbutamide on 45Ca2+ efflux and insulin release without changing 86Rb+ efflux, 45Ca2+ influx or electrical activity. Omission of extracellular Ca2+ suppressed all effects due to the combination of TPA and tolbutamide, but not those of TPA alone. Though ineffective alone, 10 nM-TPA amplified the releasing action of tolbutamide without affecting its ionic and electrical effects. In conclusion, the two amplification systems of insulin release involve at least partially distinct mechanisms. The cyclic AMP but not the protein kinase C system initiating signal (Ca2+ influx) triggered by the primary secretagogue.  相似文献   

14.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

15.
Application of trifluoperazine (10-50 microM) to suspensions of the yeast Saccharomyces cerevisiae induces the following effects. (1) A marked increase in the initial rate of 45Ca2+ influx into the cells, accompanied by an increase in the cellular content of calcium. This stimulation in 45Ca2+ influx (10-20-fold) is observed only in the presence of a metabolic substrate and is completely inhibited by LaCl3. The dose-response curves of the cellular accumulation of 45Ca2+ are of a bell shape, indicating a biphasic response. The concentration of the drug yielding maximal accumulation depends on the density of the cells in the suspensions. The results indicate that the stimulation of 45Ca2+ influx is mediated by an energy-dependent carrier-mediated process and not by the increase in the passive membrane permeability to Ca2+. (2) Efflux of K+ from the cells is induced. Removal of metabolic substrate abolishes the effect at concentrations of up to 35 microM and reduces it at higher concentrations. Addition of high concentrations of cations (K+, Na+, Mg2+) to the medium abolishes the stimulation of both K+ efflux and Ca2+ influx. Chloropromazine, thioridazine and chlorprothixene display similar effects, but at higher concentrations. The results are discussed in terms of two possible alternative mechanisms; (1) calmodulin-independent effects of trifluoperazine on cell membranes, or (2) inhibition of some calmodulin-dependent processes by low concentrations of trifluoperazine.  相似文献   

16.
The activities of Ca2+, Mg2+-ATPase and Na+, K+-ATPase and the permeability of reconstituted human erythrocytes for Na and K ions were measured, using Ca2+-EGTA, Ca2+ATP and Ca2+-sodium citrate buffers. It was found that the increase in the Ca2+/chelate ratio caused stimulation of Ca2+, Mg2+- and Na+, K+-Atpases and an increase in the rate constants of ouabain--dependent 42K+ influx and 22Na+ efflux from the erythrocytes. The use of the Ca2+-sodium citrate system as a calcium buffer did not change the parameters of the functional state of erythrocyte membranes. The data obtained are discussed in terms of a possible role of calcium ions, which are bound to the inner surface of the erythrocyte membrane, in the regulation of the systems of active and passive transport of cations.  相似文献   

17.
Nordihydroguaiaretic acid irreversibly inhibits both Ca++ dependent and independent lysosomal enzyme release from rabbit peritoneal neutrophils induced by the chemotactic factors, formyl-methionyl-leucyl-phenylalanine and C5a in the presence of cytochalasin B. The inhibition is both concentration and time dependent. In addition, the cytochalasin B dependent release induced by arachidonic acid and the Ca++ ionophore A23187 is similarly inhibited. Similar concentrations of NDGA also inhibit neutrophil locomotion and chemotactic factor enhanced locomotion, as measured using modified Boyden chambers. As nordihydroguaiaretic acid has been shown to be an inhibitor of lipoxygenase activity, it is possible that this pathway of arachidonic acid metabolism is important in neutrophil locomotion and in cytochalasin B dependent lysosomal enzyme release induced by secretagogues.  相似文献   

18.
Extracellular Ca2+ regulated the synthesis and release of platelet-activating factor (PAF) from human polymorphonuclear leukocytes (PMN) stimulated with N'-formyl-methionyl-leucyl-phenylalanine (FMLP) in the presence of cytochalasin B. Maximum PAF synthesis and release required the presence of 0.14 mM Ca2+ whereas 1.4 mM Ca2+ was necessary for maximum lysosomal enzyme secretion. The synthesis of PAF occurred within 2.5 min after PMN stimulation in the presence of 1.4 mM Ca2+; however, PAF release did not occur until 5 min after stimulation. Peak PAF release occurred by 7.5 min but accounted for only 30-40% of the total amount of PAF synthesized, the remainder being retained on or within the PMN. Stimulation of PMN in the presence of 0.01 M EDTA or EGTA decreased PAF synthesis and release by greater than 95%. In the absence of extracellular Ca2+, stimulated PMN synthesized PAF in amounts that were 10-30% of maximum, but there was no release of the newly synthesized PAF. At Ca2+ concentrations greater than 0.01 mM, there was a dose-dependent (up to 0.14 mM) increase in PAF synthesis that was associated with the initiation and concomitant increase in the amount of PAF released. These data suggest the presence of a PAF synthesis-release coupling mechanism in which the extracellular Ca2+-dependent release of PAF stimulates additional PAF synthesis.  相似文献   

19.
Catecholamine (CA) release from adrenal medulla evoked by muscarinic receptor stimulation has been studied using isolated perfused adrenal gland and cultured chromaffin cells from dogs. Muscarine and oxotremorine (1-100 microM), and bethanechol (0.1-1 mM) dose-dependently stimulated CA release. Muscarine-evoked CA release was antagonized with M1-antagonist, pirenzepine and, to a lesser extent, with atropine; and was reduced either by removal of extracellular Ca2+ or treatment with Ca2+ channel blockers. Muscarine caused an increase of 45Ca uptake and 22Na uptake. Tetrodotoxin (TTX) did not affect muscarine-evoked increase of 22Na uptake and CA release. Under the absence of extracellular Ca2+, muscarine stimulated a 45Ca efflux. Muscarine-induced CA release was attenuated by treating the cells with 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate-HCl (TMB-8) which blocks Ca2+ release from the intracellular store. A phospholipase C inhibitor, neomycin, markedly reduced muscarine-induced CA release but not nicotine- and high K(+)-evoked release. Cinnarizine, a Ca2+ channel blocker, attenuated muscarine-evoked but not caffeine-induced CA release and 45Ca efflux in the absence of extracellular Ca2+. Muscarine caused an increase in intracellular free Ca2+ concentration ([Ca2+]i) in the presence of extracellular Ca2+. It caused a similar increase, but to a lesser extent, in the absence of extracellular Ca2+. The increase of [Ca2+]i induced by muscarine without extracellular Ca2+ was reduced by neomycin and cinnarizine. Polymixin B and retinal, which reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced CA release, had little effect on muscarine-induced CA release. Muscarine increased cellular Ins(1,4,5)P3 production, and atropine inhibited this increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The characteristics of Ca2+ transport across the excitable membrane of Paramecium aurelia were studied by measuring 45Ca2+ influx and efflux. The intracellular concentration of free Ca2+ in resting P. aurelia was at least ten times less than the extracellular concentration. Ca2+ influx was easily measurable at 0 degrees C, but not at 23 degrees C. The influx of 45Ca2+ was stimulated by the same conditions which cause membrane depolarization and ciliary reversal. Addition of Na+ and K+ (which stimulate ciliary reversal) resulted in a 10-fold increase in the rate of Ca2+ influx. An externally applied, pulsed, electric field (1-2 mA/cm2 of electrode surface), caused the rate of Ca2+ influx to increase 3-5 times, with the extent of stimulation dependent on the current density and the pulse width. Ca2+ influx had the characteristics of a passive transport system and was associated with the chemically or electrically triggered Ca2+ "gating" mechanism, which has been studied electrophysiologically. In contrast, Ca2+ efflux appeared to be catalyzed by an active transport system. With cells previously loaded at 0 degrees C with 45Ca2+, Ca2+ efflux was rapid at 23 degrees C, but did not occur at 0 degrees C. This active Ca2+ efflux mechanism is probably responsible for maintaining the low internal Ca2+ levels in unstimulated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号