首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
McGill S  Chia W  Karp R  Ashburner M 《Genetics》1988,119(3):647-661
A dominant mutation of Drosophila melanogaster, Scutoid (Sco), acts as an antimorphic allele of the no-ocelli (noc) gene. In Sco the noc region has been transposed from 35B to 35D on chromosome arm 2L and the noc gene is now adjacent to snail (sna). Induced revertants of Sco are frequently mutant for sna or are aberrations broken very close to sna. A molecular analysis of the Sco chromosome has confirmed that noc is transposed and fused to the sna region. However, only part of the noc region is included within the transposition. The breakpoints of 19 chromosomally aberrant Sco revertants have been mapped at the molecular level. Fourteen of these breakpoints map to the noc region, spread over about 80 kb of DNA. The breakpoints of the remaining five are not within the DNA of the noc region and appear to map within sequences from the sna region. This has been shown directly for three of these, those associated with T(2;3)ScoR+13, In(2L)ScoR+24 and In(2L)ScoR+26. Thus mutation of either noc or sna, genes which are apparently unrelated in their wild-type functions, can revert the antimorphic phenotype of Sco.  相似文献   

2.
3.
The position of the structural gene coding for alcohol dehydrogenase (ADH) in Drosophila melanogaster has been shown to be within polytene chromosome bands 35B1 and 35B3, most probably within 35B2. The genetic and cytological properties of twelve deficiencies in polytene chromosome region 34--35 have been characterized, eleven of which include Adh. Also mapped cytogenetically are seven other recessive visible mutant loci. Flies heterozygous for overlapping deficiencies that include both the Adh locus and that for the outspread mutant (osp: a recessive wing phenotype) are homozygous viable and show a complete ADH negative phenotype and strong osp phenotype. These deficiencies probably include two polytene chromosome bands, 35B2 and 35B3.  相似文献   

4.
Complementation analyses of radiation-induced deletion mutations involving the albino (c) locus in Chromosome (Chr) 7 of the mouse have identified several loci, in addition to c, that have important roles in development. The "mesoderm-deficient" (msd) and "hepatocyte-specific developmental regulation-1" (hsdr-1) loci, which are proximal and tightly linked to c, are important in the formation of mesoderm and in the regulation of liver- and kidney-specific induction of various enzymes and proteins, respectively. Cloning deletion-breakpoint-fusion fragments caused by lethal albino deletions that genetically define the extents of the msd and hsdr-1 loci is one way of generating molecular probes for studying the gene(s) involved in these phenotypes. The distal breakpoints of five such deletions were positioned on a long-range (PFGE) map of approximately 1.7 Mb of wild-type DNA surrounding the c, D7Was12, and Emv-23 loci. In addition, the distal breakpoints of two viable albino deletions, which remove part of the tyrosinase gene and extend distally, were localized in the vicinity of the lethal deletion breakpoints. Therefore, the viable deletions can be exploited to generate additional DNA probes that should facilitate the isolation of breakpoint clones from chromosomes carrying lethal deletions defining hsdr-1 and msd.  相似文献   

5.
T. Davis  J. Trenear    M. Ashburner 《Genetics》1990,126(1):105-119
  相似文献   

6.
7.
G Lefevre 《Genetics》1981,99(3-4):461-480
Cytogenetic analysis of more than 1500 randomly recovered lethal X chromosomes derived from 2000 and 3000 r X-ray exposures of post-meiotic male germ cells has made possible a plot of the distribution in different regions of the X chromosome of: (1) gene mutations associated with cytologically normal chromosomes, (2) mutations associated with chromosomal rearrangement breakpoints, (3) deficiencies, and (4) rearrangement breakpoints whether or not they are associated with mutations. The distribution of point mutations, vital loci and rearrangement breakpoints in different regions of the X chromosome is not proportional to either the number of bands or the relative DNA content. Further, the density of vital loci (those capable of mutating to a lethal allele) is quite different in some regions as compared to others. For example, vital loci in the 3AB region, which has been thoroughly studied by Judd and others, are at least as numerous as bands; whereas, the 3CD region, equally long, has only two vital loci. Other regions densely populated with vital loci include 1B, 1F-2A, 10A, 11A, and 19EF; sparsely populated regions include 6EF and 10B-10E. It seems reasonable to conclude that the recovered X-ray-induced mutants available for analysis do not represent a random sample of those initially induced in the exposed male germ cells.  相似文献   

8.
9.
10.
We have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterise deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5' end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.  相似文献   

11.
12.
The structure and expression of the distal part of the malK-lamB operon in Escherichia coli was studied. DNA sequencing was performed as far as a HinfI restriction site located 1313 base-pairs downstream from gene lamB. The open reading frame, formerly called molA, which begins 245 base-pairs downstream from gene lamB, is longer than was initially thought, and was renamed malM. It could encode a protein of 306 amino acid residues. The complete malM open reading frame was cloned under control of the tac 12 promoter. In maxicells, the resulting plasmid permitted tac12-promoted synthesis of two polypeptides, encoded by gene malM, with apparent molecular weights of 37 X 10(3) and 34.5 X 10(3). We provide strong evidence that the 34.5 X 10(3) Mr protein is derived from the 37 X 10(3) Mr protein by processing at the amino-terminal end, and that this processed form is located in the periplasmic space. We show that the chromosomal malM gene is expressed as part of the malK-lamB operon, and that its product is periplasmic. Finally, we demonstrate with nuclease S1 mapping experiments that the mRNA terminates at a typical rho-independent terminator located about 45 base-pairs beyond the end of gene malM, which is thus the last gene of the malK-lamB operon.  相似文献   

13.
The ribosomal protein genes are present in two to four copies per haploid genome of Xenopus laevis. Using cloned complementary DNA probes, we have isolated, from a genomic library of X. laevis, several clones containing genes for two different ribosomal proteins (L1 and L14). These genes contain intervening sequences. In the case of the L1 gene, the exons are 100 to 200 base-pairs long and the introns, on average, 400 base-pairs. Along the genomic fragments, two different classes of repetitive DNA are present: highly and middle repetitive DNA. Both are evolutionarily unstable as shown by hybridization to Xenopus tropicalis DNA. Several introns of the gene coding for protein L1 contain middle repetitive sequences. Hybridization and hybrid-released translation experiments have shown that sequences inside the two genes hybridize to several poly(A) messenger RNAs. Some of the products encoded by these mRNA have electrophoretic properties of ribosomal proteins.  相似文献   

14.
A modification of the ISSR amplification method based on using a combination of microsatellite and specific unique primer is proposed and tested. This modification simplifies the detected PCR profiles and allows the examination of DNA regions containing definite genes. Combinations of microsatellite primer Mic2 (5'-gacag-acaga-cagac-a-3') and one of the primers specific to the Adh1 locus, which controls alcohol dehydrogenase (ADH1) in sugar beet, were employed in this work. The microsatellite primer was used in combination with the following specific primers: Adh1f (5'-agagt-gttgg-agagg-gtgtg-ac-3') containing the binding site at the fourth exon of gene Adh1, or Adh1r (5'-act(ct)a-cagca-ag(ct)cc-(ct)ac(ct)g-ctcc-3') that binds to the fifth exon of the same gene. In the agamospermous progeny of individual heterozygous diploid plants of sugar beet with the Adh1-F/Adh1-S genotype, polymorphism of PCR profiles obtained in plants of each of three phenotypic classes (FF, FS, and SS) was detected. Among plants of the progeny from an individual plant that represents the heterozygous phenotypic class FS, differences were revealed not only between the PCR profiles but also in the relative activity of allele isozymes of ADH1.  相似文献   

15.
16.
17.
Molecular mapping of genetic and chromomeric units in Drosophila melanogaster   总被引:14,自引:0,他引:14  
We have used a set of overlapping cloned segments defining a 315 kb (X 10(3) base-pairs) region of Drosophila melanogaster chromosomal DNA to map the sequences associated with the polytene band-interbands (chromomeric units) and with the lethal complementation groups contained within this region. The molecular map positions of the 13 +/- 1 chromomeric units from the 87D5-6 to 87E5, 6 region of the third chromosome were determined by in situ hybridization of selected segments to the polytene chromosomes. The length of the largest chromomeric unit within the 315 kb region is approximately 160 kb, while that for the smallest is less than 7 kb and may be as short as 3 kb. By mapping the breakpoints of deletions within the 315 kb region, we have located its 12 lethal complementation groups, which include the genes coding for acetylcholinesterase (Ace) and xanthine dehydrogenase (rosy). Comparison of the two molecular maps indicates a one-to-one topographical correlation between the genetic and chromomeric units.  相似文献   

18.
Molecular analysis of the heterogeneity region of the human ribosomal spacer   总被引:21,自引:0,他引:21  
The human ribosomal non-transcribed spacers are 30 X 10(3) base-pairs (or 30 kb) in length with a limited length heterogeneity localized in a specific region downstream from the 3' end of the transcribed region. Total DNA digested with EcoRI and BamHI and hybridized with a probe containing the 3' end of the 28 S ribosomal RNA coding region shows four major bands of 3.9 kb, 4.6 kb, 5.4 kb and 6.2 kb. The 5.4 kb band is the most abundant in every individual, followed by the 4.6 kb band. The longest and the shortest size classes are less well-represented and may even be absent. Every individual shows his own pattern of relative abundance of non-transcribed spacer length classes that can be followed through generations. We decided to investigate the molecular structure of the heterogeneity region, in order to cast light onto the mechanisms underlying the origin and maintenance of this length heterogeneity. Pertinent spacer regions of eight ribosomal clones from two human genomic libraries were subcloned and analyzed by restriction mapping and nucleotide sequencing. In the minimal length class, there is a sequence of 700 base-pairs that appears to be tandemly duplicated once, twice or three times in the other length classes. This repeated DNA module contains a region consisting of repetitions of simple pyrimidine groups like C-T, C-T-T-T or C-C-C-T. DNA module repeats may differ by the length of this pyrimidine-rich region. However, these length variations are not continuous, as revealed by Southern transfer analysis of several individuals and different cloned gene units: instead, the repeated modules fall into two discrete length classes of about 700 base-pairs and 800 base-pairs. An imperfect duplication of a short sequence of 86/89 base-pairs is present at the boundary between the heterogeneity region and the upstream flanking region, representing a very ancient duplication event.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号