首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of subunits of avidin coupled to Sepharose   总被引:8,自引:2,他引:6       下载免费PDF全文
Avidin that had been coupled to Sepharose 4B activated with CNBr retained over 90% of its biotin-binding capacity. When low concentrations of CNBr were used about 75% of the protein could be removed from the Sepharose by washing with guanidinium chloride (6 m). The remaining 25%, the covalently bound subunits, had an almost undiminished capacity for biotin but a decreased affinity. Addition of avidin subunits in guanidinium chloride to the coupled subunits followed by dilution or dialysis restored the original biotin-binding capacity and affinity. Three classes of binding sites were present in preparations of the subunits. About 25% were weak (K=5x10(-8)m), about one third exchanged their biotin in a few minutes (K approximately 10(-10)m) and the remainder were indistinguishable from the native tetramer. The last-named exchanged their bound biotin at a similar rate at pH5 and at pH2, they did not lose their biotin in 6 m-guanidinium chloride and they were resistant to tryptic digestion in the absence of biotin. The proportion of these stable sites could be increased to 65% when the subunits coupled to Sepharose were incubated at 37 degrees C. This increase was reversed by guanidinium chloride, which suggested that it was caused by a temperature-dependent association of covalently linked subunits. This in turn implies a temperature-dependent mobility of the agarose matrix of the Sepharose. Analysis of the spatial distribution of subunits within the Sepharose beads led to the conclusion that the association of subunits implied that they could move through distances greater than 20nm (several hundred A). This mobility and consequent formation of tetramer was greatly decreased when avidin subunits were coupled to Sepharose that had been cross-linked with divinyl sulphone.  相似文献   

2.
The arrangement of subunits in flagellar fibers   总被引:15,自引:0,他引:15  
  相似文献   

3.
The arrangement of subunits in cholera toxin.   总被引:64,自引:0,他引:64  
D M Gill 《Biochemistry》1976,15(6):1242-1248
Cholera toxin consists of five similar B subunits of apparent molecular weight about 10 600 and one A subunit (29 000) consisting of two peptides (A1 23 000-24 000 and A2 about 5500) linked by a single disulfide bond. Each B subunit also contains one internal disulfide bond which is readily reduced but is protected from carboxymethylation unless the reduced subunits are heated in urea. Tyrosine residues in A1 and in B subunits are readily iodinated, but the intact B assembly does not react with iodine. Upon reaction with the cross-linking reagent dimethyl suberimidate, B subunits may be covalently connected to each other, to A1 and to A2. A1 and A2 may also be cross-linked. The B subunits are probably arranged in a ring with A on the axis. A2 is required for the re-assembly of toxin from its subunits and may serve to hold A1 on the B ring. The maximum activity of cholera toxin in vitro is obtained only when the active peptide, A1, is separated from the rest of the molecule. Such separation, and the insertion of A1 into the cytosol, must follow the binding of the complete toxin, through component B, to the exterior of intact cells. This binding increases the effective concentration of the toxin in the vicinity of the plasma membrane. Possible ways in which A1 then crosses the membrane are considered in the Discussion.  相似文献   

4.
5.
6.
A new form of transcarboxylase has been isolated which has a molecular weight of 1,200,000, an s20,w of 26 S, and contains 12 biotinyl groups. Transcarboxylase as isolated previously has a molecular weight of 790,000, an s20,w of 18 S, and contains six biotinyl groups. The larger species of enzyme consists of a central hexameric subunit with six dimeric outer subunits attached to it by biotinyl carboxyl carrier proteins, three each at the opposite faces of the central subunits. This larger species is stable at pH 5.5, but dissociates to the 18 S species at pH values near neutrality with loss of a set of three of the outer subunits with two of the biotinyl carboxyl carrier proteins still attached to each of these subunits. The dissociation to the 18 S form occurs by several rapidly reversible steps and under certain conditions of centrifugation multiple peaks are observed as a consequence of the occurrence of different forms of enzyme with variable numbers of the outer subunits attached to the 18 S enzyme. The s20,w value of the so-called 26 S enzyme varies with conditions. Isolated 18 S enzyme has been combined with isolated outer subunits to form active 26 S enzyme. The newly enzyme is a normal form but has not been isolated previously because of its dissociation to the 18 S form at neutral pH. A procedure is described for the isolation of the 26 S form in a highly purified state. The molecular weight of the enzyme has been determined by high speed meniscus depletion. In addition, a procedure is described for dissociation of the 26 S form of the enzyme and isolation of the resulting outer subunits with the biotinyl subunits still attached to it. Evidence is presented that all six outer subunits participate in the enzymatic reaction which includes the demonstration that; (a) all 12 biotins of the 26 S form of the enzyme can be carboxylated with [3-14C]methylmalonyl coenzyme A; (b) there is an increase in enzymatic activity when the outer subunits are combined with the normal 18 S enzyme with formation of the 26 S enzyme; and (c) a 26 S form of the enzyme is active which is prepared by combination of inactive 18 S trypsin-treated transcarboxylase with the outer subunits. The trypsin-treated 18 S enzyme is inactive because trypsin removes the biotin as biotinyl peptides and the 26 S enzyme is active because of the second set of active outer subunits.  相似文献   

7.
Avidin can form intermolecular cross-links between particles of the pyruvate dehydrogenase multienzyme complex from various sources. Avidin does this by binding to lipoic acid-containing regions of the dihydrolipoamide acetyltransferase polypeptide chains that comprise the structural core of the complex. It is inferred that the lipoyl domains of the acetyltransferase chain extend outwards from the interior of the enzyme particle, interdigitating between the subunits of the other two enzymes bound peripherally in the assembled structure, with the lipoyl-lysine residues capable of reaching to within at least 1-2 nm of the outer surface of the enzyme complex (diameter ca. 37 nm). The distribution of enzymic activities between different domains of the dihydrolipoamide acetyltransferase chain implies that considerable movement of the lipoyl domains is a feature of the catalytic activity of the enzyme complex. There is evidence that the lipoyl domain of the 2-oxo acid dehydrogenase complexes is similar in structure to a domain that binds the cofactor biotin, also in amide linkage with a specific lysine residue, in the biotin-dependent class of carboxylases.  相似文献   

8.
A PCR method was developed by which to rapidly and accurately determine the rrn arrangement of Salmonella enterica serovars. Primers were designed to the genomic regions flanking each of the seven rrn operons. PCR analysis using combinations of these primers will distinguish each of the possible arrangements of the rrn skeleton.  相似文献   

9.
The rRNA gene cluster of microsporidia is typically arranged in the order small subunit-internal transcribed spacer-large subunit, which conforms with the general arrangement of these genes in nearly all organisms. We found a rearrangement of the cluster in the microsporidium Glugoides intestinalis, where the large subunit precedes the small subunit. Such a rearrangement has already been reported for several species in the microsporidian genus Nosema, and we provide evidence that the arrangement reported here is a second, independent event.  相似文献   

10.
11.
The cytochrome o terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 to ubiquinone-8 within the cytoplasmic membrane and the concomitant reduction of O2 to H2O. The hydropathy profiles of the deduced amino acid sequences suggest that all five of the gene products of the cyo operon contain multiple membrane-spanning helical segments. The goal of this work was to obtain experimental evidence for the topology of the five gene products in the cytoplasmic membrane by using the technique of gene fusions. A number of random gene fusions were generated in vitro encoding hybrid proteins in which the amino-terminal portion was provided by the subunit of interest and the carboxyl-terminal portion by one of two sensor proteins, alkaline phosphatase lacking its signal sequence or beta-galactosidase. Results obtained are self-consistent, and topological models are proposed for all of the five gene products encoded by the cyo operon. Based on the sequence similarities with subunits of the aa3-type cytochrome c oxidases, the experimental evidence obtained here can be used to infer topological models for the mitochondrial encoded subunits of the eukaryotic cytochrome c oxidases.  相似文献   

12.
Analytical methods to determine phytoestrogenic compounds   总被引:1,自引:0,他引:1  
The analytical methods for the determination of phytoestrogenic compounds in edible plants, plant products and biological matrices are reviewed. The detection, qualitative and quantitative methods based on different chromatographic separations of gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) coupled with various detections by ultraviolet absorption (UV), electrochemical detection (ED), fluorescence detection, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), as well as non-chromatographic immunoassay are each extensively examined and compared. An overview on phytoestrogen chemistry, bioactivities and health effects, plant precursors, metabolism and sample preparation is also presented.  相似文献   

13.
Essential background on the determination of absolute configuration by way of single-crystal X-ray diffraction (XRD) is presented. The use and limitations of an internal chiral reference are described. The physical model underlying the Flack parameter is explained. Absolute structure and absolute configuration are defined and their similarities and differences are highlighted. The necessary conditions on the Flack parameter for satisfactory absolute-structure determination are detailed. The symmetry and purity conditions for absolute-configuration determination are discussed. The physical basis of resonant scattering is briefly presented and the insights obtained from a complete derivation of a Bijvoet intensity ratio by way of the mean-square Friedel difference are exposed. The requirements on least-squares refinement are emphasized. The topics of right-handed axes, XRD intensity measurement, software, crystal-structure evaluation, errors in crystal structures, and compatibility of data in their relation to absolute-configuration determination are described. Characterization of the compounds and crystals by the physicochemical measurement of optical rotation, CD spectra, and enantioselective chromatography are presented. Some simple and some complex examples of absolute-configuration determination using combined XRD and CD measurements, using XRD and enantioselective chromatography, and in multiply-twinned crystals clarify the technique. The review concludes with comments on absolute-configuration determination from light-atom structures.  相似文献   

14.
Isotope effects are one of the most powerful kinetic tools for determining enzyme mechanisms. There are three methods of measurement. First, one can compare reciprocal plots with labeled and unlabeled substrates. The ratio of the slopes is the isotope effect on V/K, and the ratio of the vertical intercepts is the isotope effect on V(max). This is the only way to determine V(max) isotope effects, but is limited to isotope effects of 5% or greater. The second method is internal competition, where the labeled and unlabeled substrates are present at the same time and the change in their ratio in residual substrate or in product is used to calculate an isotope effect, which is that on V/K of the labeled reactant. This is the method used for tritium or (14)C, or with the natural abundances of (13)C, (15)N, or (18)O. The third method involves perturbations from equilibrium when a labeled substrate and corresponding unlabeled product are present at chemical equilibrium. This also gives just an isotope effect on V/K for the labeled reactant. The chemistry is typically not fully rate limiting, so that the isotope effect on V/K is given by: (x)(V/K)=((x)k+c(f)+c(r)(x)K(eq))/(1+c(f)+c(r)) where x defines the isotope (D, T, 13, 15, 18 for deuterium, tritium, (13)C, (15)N, or (18)O), and (x)(V/K), (x)k, and (x)K(eq) are the observed isotope effect, the intrinsic one on the chemical step, and the isotope effect on the equilibrium constant, respectively. The constants c(f) and c(r) are commitments in forward and reverse directions, and are the ratio of the rate constant for the chemical reaction and the net rate constant for release from the enzyme of the varied substrate (direct comparison) or labeled substrate (internal competition and equilibrium perturbation) for c(f), or the first product released or the one involved in the perturbation for c(r). The intrinsic isotope effect, (x)k, can be estimated by comparing deuterium and tritium isotope effects on V/K, or by comparing the deuterium isotope effect with (13)C ones with deuterated and undeuterated substrates. Adding a secondary deuterium isotope effect and its effect on the (13)C one can give an exact solution for all intrinsic isotope effects and commitments. The effect of deuteration on a (13)C isotope effect allows one to tell if the two isotope effects are on the same or different steps. Applications of these methods to several enzyme systems will be presented.  相似文献   

15.
16.
Surging wildfires across the globe are contributing to escalating residential losses and have major social, economic, and ecological consequences. The highest losses in the U.S. occur in southern California, where nearly 1000 homes per year have been destroyed by wildfires since 2000. Wildfire risk reduction efforts focus primarily on fuel reduction and, to a lesser degree, on house characteristics and homeowner responsibility. However, the extent to which land use planning could alleviate wildfire risk has been largely missing from the debate despite large numbers of homes being placed in the most hazardous parts of the landscape. Our goal was to examine how housing location and arrangement affects the likelihood that a home will be lost when a wildfire occurs. We developed an extensive geographic dataset of structure locations, including more than 5500 structures that were destroyed or damaged by wildfire since 2001, and identified the main contributors to property loss in two extensive, fire-prone regions in southern California. The arrangement and location of structures strongly affected their susceptibility to wildfire, with property loss most likely at low to intermediate structure densities and in areas with a history of frequent fire. Rates of structure loss were higher when structures were surrounded by wildland vegetation, but were generally higher in herbaceous fuel types than in higher fuel-volume woody types. Empirically based maps developed using housing pattern and location performed better in distinguishing hazardous from non-hazardous areas than maps based on fuel distribution. The strong importance of housing arrangement and location indicate that land use planning may be a critical tool for reducing fire risk, but it will require reliable delineations of the most hazardous locations.  相似文献   

17.
We have observed that three proteolytic enzymes with widely different specificities produce a very similar pattern in terms of the order of digestion of the various histone fractions in chromatin. Histone H2A is most resistant to proteolytic attack by trypsin, chymotrypsin, or Pronase. H2B is next most resistant, followed by H3. Histone H1 is least resistant and is rapidly hydrolyzed by each of these enzymes. The behavior of histone H4 differs for the various enzymes. It is as resistant as H2A to digestion by trypsin and chymotrypsin but is readily hydrolyzed by Pronase. A comparison of the rates of digestion of the various histone fractions in chromatin with the rates in a DNA-free histone mixture and a study of the degradation products which result from digestion indicate that histone conformation and histone-histone and DNA-histone interactions are all involved in protecting histones from attack by proteolytic enzymes. From the results of our studies we have concluded that histones H1 and H3 are located in superficial positions of the chromosomal substructures (or nu bodies) while H2A is buried inside. Since histone H2B is relatively resistant to digestion but more readily degraded in chromatin than in a DNA-free histone mixture, it is difficult to determine its chromosomal location. Histone H4 behaves as if a large portion of the molecule is located in the major groove of the DNA helix.  相似文献   

18.
Summary By crossing artificially produced heterokaryons with the wild type and recording the ascospore cultures coming from individual perithecia, it has been shown that the nuclei of the ascogeneous hyphae come from several initial pairs.  相似文献   

19.
  1. Download : Download high-res image (128KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号