首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyla cinerea and H. gratiosa are closely related treefrogs that differ at metamorphosis in the length of the hind limb relative to snout vent length. A developmental series of larvae of the two species raised under uniform laboratory conditions reveals that H. cinerea have proportionately longer legs at metamorphosis than H. gratiosa for the following reasons: 1) Hyla cinerea initiate limb growth at a smaller body size than H. gratiosa, 2) H. cinerea have a faster rate of limb growth, and 3) body growth rates in H. cinerea and H. gratiosa are nearly identical until just before metamorphosis.  相似文献   

2.
Summary Univariate and bivariate methods for comparing norms of reaction among species are discussed and illustrated with an example using North American hylid treefrogs. Norms of reaction for size at metamorphosis (SM) and length of larval period (LP) were compared among treefrog species raised at different food levels (Hyla cinerea vs H. gratiosa) and at different temperatures (H. cinerea vs H. gratiosa vs H. squirella). Hyla cinerea and Hyla gratiosa show parallel norms of reaction across food levels and temperatures. Across temperatures, H. squirella shows a much smaller change in SM relative to change in LP than do H. cinerea and H. gratiosa. This difference in shape of reaction norms may reflect different histories of selection resulting from these species' use of different larval habitats.  相似文献   

3.
Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.  相似文献   

4.
Summary We designed a series of field experiments to investigate the importance of interactions between biotic and abiotic factors on the survival and development of larval cohorts of Bufo terrestris. Five blocks in a large pond represented environments of varying physical harshness. In the more severe blocks, increased density inhibited growth rates, yet in the more benign blocks, increased density enhanced growth rate. Although different blocks produced very different levels of survival to metamorphosis and size at metamorphosis, there were no interactions with density. Increased density produced lengthened development times in the harsher blocks, but had no effect in the less stressful blocks. Hatchlings that were in the lowest of 3 initial size classes never caught up with their larger contemporaries and survived poorly. Hatchlings in the middle and largest size classes performed equivalently in all parameters of growth and development, but hatchlings from the middle size class were less likely to survive than their larger contemporaries. The effects of initial size did not interact with block. The inhibitory patterns displayed by density in conjunction with varying physical environments are similar to those found in comparable experiments with plants.  相似文献   

5.
Martha L. Crump 《Oecologia》1981,49(2):167-169
Summary Timing of metamorphosis and size at metamorphosis were examined for Hyla crucifer under two densities in the laboratory. Results agree with previously known relationships for ranids and bufonids: at higher densities developmental time is longer, mean size at metamorphosis is smaller, and both parameters have greater variance than at lower densities. Density also affects energy accumulation: under ad libitum feeding conditions, an average individual raised at a higher density is able to accumulate less energy before metamorphosis than an average individual raised at a lower density. The suggestion is made that, in addition to growth and differentiation rates, energy accumulation may be important in determining when amphibian metamorphosis occurs.  相似文献   

6.
In weed biological control, insect damage to target weeds can be simulated in invaded habitats to study potential responses of the plant to introduced natural enemies. In the present study, we investigated the impact of two levels of manual flower-shoot damage (shoots cut at tip or base) on Alliaria petiolata (garlic mustard) survival, size, and reproduction. Experiments were conducted in 2002 and 2003 using invasive field populations of A. petiolata under naturally varying plant densities. Plant survival was recorded, and size and reproduction parameters were measured. Manual flower-shoot damage had a significant effect on plant survival. In both years, fewer plants survived in the basal-cut treatment than in either the control (un-cut) or tip-cut treatment. Plant size and reproductive output were likewise reduced in the basal-cut treatment. In both years, total seed production was significantly lower in the basal-cut treatment than either the control or tip-cut treatment. When combined, increased mortality and reduced seed production of basal-cut plants greatly reduced the contribution these plants made to the seed bank. Plant density did not affect reproduction or plant size. The impacts of cutting were consistent across years and sites with distinct biotic and abiotic conditions, and A. petiolata densities. We anticipate that herbivore damage to A. petiolata populations by introduced biological control agents will likewise remain consistent under varying biotic and abiotic conditions if the agents are equally adapted to these.  相似文献   

7.
Recent experiments suggest that timing of metamorphosis is fixed during development in some anurans, insects, and freshwater invertebrates. Yet, these experiments do not exclude a growth rate optimization model for the timing of metamorphosis. I manipulated food resources available to larvae of squirrel treefrogs (Hyla squirella) to determine if there is a loss of plasticity in duration of larval period during development and to critically test growth rate models for the timing of metamorphosis. Size-specific resource levels for individual tadpoles were switched from low to high or high to low at three developmental stages spaced throughout larval development. The effects of changes in resource availability on larval period and mass at metamorphosis were measured. Switching food levels after late limb bud development did not significantly affect larval period in comparison to constant food level treatments. Therefore, developmental rate in H. squirella is better described by a fixed developmental rate model, rather than a growth rate optimization model. The timing of fixation of developmental rate in H. squirella is similar to that found in other anuran species, suggesting a taxonomically widespread developmental constraint on the plasticity of larval period duration. Mass at metamorphosis was not significantly affected by the timing of changes in food levels; the amount of food available later in development determined the size at metamorphosis. Larval period and mass at metamorphosis were negatively correlated in only one of two experiments, which contrasts with the common assumption of a phenotypic trade-off between decreased larval period and increased mass at metamorphosis. Received: 19 August 1996 / Accepted: 20 June 1997  相似文献   

8.
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

9.
Variation in age and size at life‐history transitions is a reflection of the diversifying influence of biotic or abiotic environmental change. Examples abound, but it is not well understood how such environmental changes influence the age structure of a population. I experimentally investigated the effects of water temperature and food type on age and body size at metamorphosis in larvae of the salamander Hynobius retardatus. In individuals grown at a cold temperature (15 °C) or given Chironomidae as prey, the time to metamorphosis was significantly prolonged, and body size at metamorphosis was significantly enlarged, compared with individuals grown at a warmer temperature (20 °C) or fed larvae. I also examined whether larval density (a possible indicator of cannibalism in natural habitats) generated variation in the age structure of natural populations in Hokkaido, Japan, where the climate is subarctic. Natural ponds in Hokkaido may contain larvae that have overwintered for 1 or 2 years, as well as larvae of the current year, and I found that the number of age classes was related to larval density. Although cool water temperatures prolong the larval period and induce later metamorphosis, in natural ponds diet‐based enhancement of development translated into a shorter larval duration and earlier metamorphosis. Geographic variation in the frequency of cannibalism resulted in population differences in metamorphic timing in H. retardatus larvae. It is important to understand how environmental effects are ultimately transduced through individual organisms into population‐level phenomena, with the population response arising as the summation of individual responses. Without a thorough comprehension of the mechanisms through which population and individual responses to environmental conditions are mediated, we cannot interpret the relationship between population‐level and individual‐level phenomena. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 100–114.  相似文献   

10.
Vonesh JR 《Oecologia》2005,143(2):280-290
While theoretical studies of the timing of key switch points in complex life cycles such as hatching and metamorphosis have stressed the importance of considering multiple stages, most empirical work has focused on a single life stage. However, the relationship between the fitness components of different life stages may be complex. Ontogenetic switch points such as hatching and metamorphosis do not represent new beginnings—carryover effects across stages can arise when environmental effects on the density and/or traits of early ontogenetic stages subsequently alter mortality or growth in later stages. In this study, I examine the effects of egg- and larval-stage predators on larval performance, size at metamorphosis, and post-metamorphic predation in the African tree frog Hyperolius spinigularis. I monitored the density and survival of arboreal H. spinigularis clutches in the field to estimate how much egg-stage predation reduced the input of tadpoles into the pond. I then conducted experiments to determine: (1) how reductions in initial larval density due to egg predators affect larval survival and mass and age at metamorphosis in the presence and absence of aquatic larval predators, dragonfly larvae, and (2) how differences in mass or age at metamorphosis arising from predation in the embryonic and larval environments affect encounters with post-metamorphic predators, fishing spiders. Reduction in larval densities due to egg predation tended to increase per capita larval survival, decrease larval duration and increase mass at metamorphosis. Larval predators decreased larval survival and had density-dependent effects on larval duration and mass at metamorphosis. The combined effects of embryonic and larval-stage predators increased mass at metamorphosis of survivors by 91%. Larger mass at metamorphosis may have immediate fitness benefits, as larger metamorphs had higher survival in encounters with fishing spiders. Thus, the effects of predators early in ontogeny can alter predation risk even two life stages later.  相似文献   

11.
Resource quality can have direct or indirect effects on female oviposition choice, offspring growth and survival, and ultimately on body size and sex ratio. We examined these patterns in Sirex noctilio Fabricus, the globally invasive European pine woodwasp, in South African Pinus patula plantations. We studied how tree position as well as natural variation in biotic and abiotic factors influenced sex‐specific density, larval size, tunnel length, male proportion, and survival across development. Twenty infested trees divided into top, middle, and bottom sections were sampled at three time points during larval development. We measured moisture content, bluestain fungal colonization, and co‐occurring insect density and counted, measured, and sexed all immature wasps. A subset of larval tunnels was measured to assess tunnel length and resource use efficiency (tunnel length as a function of immature wasp size). Wasp density increased from the bottoms to the tops of trees for both males and females. However, the largest individuals and the longest tunnels were found in bottom sections. Male bias was strong (~10:1) and likewise differed among sections, with the highest proportion in the middle and top sections. Sex ratios became more strongly male biased due to high female mortality, especially in top and middle sections. Biotic and abiotic factors such as colonization by Diplodia sapinea, weevil (Pissodes sp.) density, and wood moisture explained modest residual variation in our primary mixed effects models (0%–22%). These findings contribute to a more comprehensive understanding of sex‐specific resource quality for S. noctilio and of how variation in key biotic and abiotic factors can influence body size, sex ratio, and survival in this economically important woodwasp.  相似文献   

12.
Previous studies have examined abiotic and biotic factors that facilitate agonistic behavior. For larval amphibians, food availability and conspecific density have been suggested as important factors influencing intraspecific aggression and cannibalism. In this study, we examined the separate and combined effects of food availability and density on the agonistic behavior and life history of larval long-toed salamanders, Ambystoma macrodactylum. We designed a 2Ƕ factorial experiment in which larvae were raised with either a high or low density of conspecifics and fed either a high or low level of food. For each treatment, we quantified the amount of group size variation, biting, and cannibalism occurring. Additionally, we examined survival to, time to and size at metamorphosis for all larvae. Results indicated that differences in both density and food level influenced all three life history traits measured. Moreover, differences in food level at which larvae were reared resulted in higher within-group size variation and heightened intraspecific biting while both density and food level contributed to increased cannibalism. We suggest that increased hunger levels and an uneven size structure promoted biting among larvae in the low food treatments. Moreover, these factors combined with a higher encounter rate with conspecifics in the high density treatments may have prompted larger individuals to seek an alternative food source in the form of smaller conspecifics.  相似文献   

13.
Predator-prey relationships among larval dragonflies,salamanders, and frogs   总被引:2,自引:0,他引:2  
Summary Tadpoles of the barking tree frog, Hyla gratiosa, are abundant in spring and summer in some ponds and Carolina bays on the Savannah River Plant near Aiken, South Carolina. To determine how these tadpoles survive in the presence of predaceous salamander larvae, Ambystoma talpoideum, and larvae of an aeshnid dragonfly, Anax junius, we determined fields densities and sizes of the predators and the prey and conducted predation experiments in the laboratory. Tadpoles rapidly grow to a size not captured by Ambystoma, although Anax larvae can capture slightly larger tadpoles. Differing habitat preferences among the tadpoles and the two predator species probably aid in reducing predation pressure. Preliminary work indicates that the tadpoles may have an immobility response to an attack by a predator. In addition, the smallest, most vulnerable tadpoles have a distinctive color pattern which may function to disrupt the body outline and make them indiscernable to predators.  相似文献   

14.
Kudzu (Pueraria thunbergiana) plant extract impregnated sediments were used for abiotic and biotic uptakes and biodegradation. The optimized conditions were 25 μg L?1 concentration, 7 days for abiotic uptake and 56 days for biotic uptake and biodegradation, dose 2 g L?1, 7 pH, and 35°C temperature. The amount removed of dufulin was 32.6% in abiotic conditions while these were 90% in the case of biotic uptake and biodegradation. Enantioselective biodegradation indicated that S‐(+)‐enantiomer degraded faster (90%) than R‐(?)‐enantiomer (87%). The data for abiotic and biotic uptakes and biodegradation followed well Langmuir, thermodynamics, and kinetics models. All these processes followed pseudo first‐order kinetics. It was observed that biodegradation was three times responsible for dufulin removal than simple sorption uptake (abiotic and biotic). The abiotic and biotic uptakes and biodegradation were quite fast and endothermic nature. The developed method may be used to remove the racemic and enantiomeric dufulin in water.  相似文献   

15.
LaFiandra EM  Babbitt KJ 《Oecologia》2004,138(3):350-359
Predator-induced defenses can result from non-contact cues associated with the presence of a feeding predator; however, the nature of the predator cue has not been determined. We tested the role of two non-contact cues, metabolites of digestion of conspecific prey released by the predator and alarm pheromones released by attacked conspecific prey, in the development of inducible defenses by exposing pinewoods tree frog (Hyla femoralis) tadpoles to non-lethal dragonfly (Anax junius) larvae fed either inside experimental bins or removed from the bins for feeding to eliminate alarm pheromones. The costs associated with the development of the induced morphology were also investigated by providing the tadpoles with two food levels intended to provide adequate or growth limiting resources. The generalized morphological response of H. femoralis tadpoles to predators included the development of bodies and tails that were both deeper and shorter, smaller overall body size, and increased orange tail fin coloration and black tail outline. Metabolites of digestion were sufficient to initiate development of inducible defenses; however, the combination of metabolites and alarm cue resulted in a greater response. Furthermore, growth and development were slowed in tadpoles that expressed the induced morphology; however, this growth cost was insufficient to preclude the development of the induced morphology when food resources were low. These results indicate that two aspects of the indirect predator cue work together to trigger a morphological anti-predator response.  相似文献   

16.
Two full sib families of Hyla gratiosa larvae were compared in growth rate and survival under twelve ecological conditions in field enclosures. The twelve conditions represented the independent absence or presence of two predators (nymphal dragonflies and larval salamanders) and a range of three initial tadpole densities (8, 16, 32 larvae per enclosure). This 2 × 2 × 3 design for variance analysis was replicated five times in a natural pond. The presence of either predator reduced survival levels by 24%. There was no consistent effect of tadpole density on survival. However, at low tadpole density (8 per enclosure), the presence of salamanders did not affect tadpole survival levels; effect of the salamanders was restricted to the higher densities (16 and 32 per enclosure). The combined effect on overall survival of the two predators was additive. One sibship (denoted A) consistently displayed a higher survival level than the other (denoted B). However, the level of differential survival, measured as the survival of B relative to A, varied among predator combinations. Survival differences among treatments and sibships were related to body size differences. The changing levels of differential survival between sibships did not reflect a changing level of differential body size but, rather, an ecologically mediated change in the relationship between the level of body size variation and the subsequent level of survival variation. Ecological factors such as conspecific density variation or predator abundance do not act as isolated selective pressures but, rather, interact in their effects on mortality rates. These interactions cause the value of a trait related to a fitness component to vary with ecological condition. These results suggest that a thorough understanding of how selection really does act in natural populations requires a thorough understanding of the relevant ecological factors, a point all too often unappreciated.  相似文献   

17.
The effects of population density, fish density, and dissolved oxygen on body condition of late-instar nymphs of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) were investigated using nymphs sampled from isolated, upland stream pools over summer in central Arkansas, USA. All three factors exhibited high variation among pools. Body condition was negatively related to fish density, and positively related to dissolved oxygen (when included in the model). High fish densities may be related to low body condition because they cause reduced foraging or force earlier emergence at small body sizes. These results emphasize the combined effects of biotic and abiotic factors on body condition in mayflies, and support earlier findings that population density is a less-important factor.  相似文献   

18.
1.  We tested the long-standing hypothesis that female frogs are attracted to the sound of a chorus of conspecific males from a distance. We studied the barking treefrog (Hyla gratiosa) because the location of choruses is unpredictable; thus, chorus sound indicates the presence of conspecific males as well as the location of a suitable breeding site.
2.  We measured the sound pressure level (SPL in dB re 20 Pa) in the 500 Hz octave band at various distances from choruses. The primary spectral peak in the advertisement call of this species is 400–500 Hz.
3.  The pattern of chorus sound attenuation in the 500 Hz band at two different sites was very similar and generally followed the pattern expected from geometrical spreading from a point source (Fig. 3). At one of the sites the SPL measured near ground level was always higher than that at a point 1 m above the ground (Fig. 3).
4.  Spectral analyses of the chorus sound at different distances showed that the low-frequency spectral peak in the range of 400–500 Hz was a prominent component, especially at 80–160 m (Figs. 1, 4). Amplitude peaks that corresponded to individual calls ofH. gratiosa and other species were also evident in oscillograms of recordings made at 160 m (Fig. 1).
5.  Gravid females oriented and moved toward a source of conspecific chorus sounds (originally recorded at 160 m from the pond) played back at 38–40 dB SPL in the 500 Hz octave band (Fig. 1, Table 1). Background noise levels were 43–47 dB SPL (C-weighted) and 24–25 dB SPL in the 500 Hz octave band.
6.  In a two-stimulus, choice experiment, females ofH. gratiosa always chose the source of a mixed chorus (H. gratiosa andH. cinerea) sound with conspecific males to a source of a pure chorus sound ofH. cinerea (Fig. 2, Table 2).
  相似文献   

19.
1.  Both resources and abiotic factors may affect biotic interactions. One interaction that occurs in treehole habitats involves leaf shredders that facilitate growth of detritivores, and it may be affected by both leaf litter quantity and changes in water quality.
2.  Water chemistry in central Pennsylvania treeholes has been impacted by acid deposition, and the most common insects therein have differential survival under low pH conditions. Experimental microcosms that mimic treehole habitats were used to test the hypothesis that this abiotic factor, pH, also affects facilitative interactions. Leaf litter resources and pH were varied independently of presence of leaf-shredding scirtid beetles ( Helodes pulchella and Prionocyphon discoideus ), and the mosquito Aedes triseriatus , to examine interactions among pH, resources and insects.
3.  pH affected the interaction between the insects, such that effects of scirtids were more evident at pH 4·5 than at 6·5. Female mosquitoes were larger in the presence of scirtids, low resource and low pH conditions than in absence of scirtids, low resource and low pH conditions.
4.  There were also effects of A. triseriatus on scirtids. The size of individual scirtids was smaller in the presence of A. triseriatus , but total scirtid biomass was unaffected as survival was also higher in the presence of A. triseriatus .
5.  The effects observed on a resource-mediated biotic interaction led to the conclusion that this interaction is pH dependent, and gives support to the concept that abiotic factors play a role in determining the outcome of biotic interactions, and that acidification can have complex effects on communities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号