共查询到20条相似文献,搜索用时 14 毫秒
1.
Members of the actin family of proteins exhibit different biochemical properties when ATP, ADP-Pi, ADP, or no nucleotide is bound. We used molecular dynamics simulations to study the effect of nucleotides on the behavior of actin and actin-related protein 3 (Arp3). In all of the actin simulations, the nucleotide cleft stayed closed, as in most crystal structures. ADP was much more mobile within the cleft than ATP, despite the fact that both nucleotides adopt identical conformations in actin crystal structures. The nucleotide cleft of Arp3 opened in most simulations with ATP, ADP, and no bound nucleotide. Deletion of a C-terminal region of Arp3 that extends beyond the conserved actin sequence reduced the tendency of the Arp3 cleft to open. When the Arp3 cleft opened, we observed multiple instances of partial release of the nucleotide. Cleft opening in Arp3 also allowed us to observe correlated movements of the phosphate clamp, cleft mouth, and barbed-end groove, providing a way for changes in the nucleotide state to be relayed to other parts of Arp3. The DNase binding loop of actin was highly flexible regardless of the nucleotide state. The conformation of Ser14/Thr14 in the P1 loop was sensitive to the presence of the γ-phosphate, but other changes observed in crystal structures were not correlated with the nucleotide state on nanosecond timescales. The divalent cation occupied three positions in the nucleotide cleft, one of which was not previously observed in actin or Arp2/3 complex structures. In sum, these simulations show that subtle differences in structures of actin family proteins have profound effects on their nucleotide-driven behavior. 相似文献
2.
Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis. 相似文献
3.
Proteins are held together in the native state by hydrophobic interactions, hydrogen bonds and interactions with the surrounding water, whose strength as well as spatial and temporal distribution affects protein flexibility and hence function. We study these effects using 10 ns molecular dynamics simulations of pure water and of two proteins, the glutamate receptor ligand binding domain and barnase. We find that most of the noncovalent interactions flicker on and off over typically nanoseconds, and so we can obtain good statistics from the molecular dynamics simulations. Based on this information, a topological network of rigid bonds corresponding to a protein structure with covalent and noncovalent bonds is constructed, with account being taken of the influence of the flickering hydrogen bonds. We define the duty cycle for the noncovalent interactions as the percentage of time a given interaction is present, which we use as an input to investigate flexibility/rigidity patterns, in the algorithm FIRST which constructs and analyses topological networks. 相似文献
4.
Molecular dynamics simulations have been used to study the motions in vacuum of the disaccharide sucrose. Ensembles of trajectories were calculated for each of the five local minimum energy conformations identified in the adiabatic conformational energy mapping of this molecule. The model sucrose molecules were found to exhibit a variety of motions, although the global minimum energy conformation was found to be dynamically stable, and no transitions away from this structure were observed to occur spontaneously. In all but one of these vacuum trajectories, the intramolecular hydrogen bond between residues was maintained, in accord with recent nmr studies of this molecule in aqueous solution. Considerable flexibility of the furanoid ring was found in the trajectories. No flips to the opposite puckering for this ring were found in the simulations starting from the global minimum, although such a transition was observed for a trajectory initiated with one of the higher local minimum energy conformations. Overall, the observed structural fluctuations were consistent with the experimental picture of sucrose as a relatively rigid molecule. 相似文献
5.
Ribonucleotide reductase (RNR) is necessary for production of the precursor deoxyribonucleotides for DNA synthesis. Class Ia RNR functions via a stable free radical in one of the two components protein R2. The enzyme mechanism involves long range (proton coupled) electron transfer between protein R1 and the tyrosyl radical in protein R2. Earlier experimental studies showed that p-alkoxyphenols inhibit RNR. Here, molecular docking and molecular dynamics simulations involving protein R2 suggest an inhibition mechanism for p-alkoxyphenols . A low energy binding pocket is identified in protein R2. The preferred configuration provides a structural basis explaining their specific binding to the Escherichia coli and mouse R2 proteins. Trp48 (E. coli numbering), on the electron transfer pathway, is involved in the interactions with the inhibitors. The relative order of the binding energies calculated for the phenol derivatives to protein R2 is correlated with earlier experimental data on inhibition efficiency, in turn related to increasing size of the hydrophobic alkyl substituents. Using the configuration identified by molecular docking as a starting point for molecular dynamics simulations, we find that the p-allyloxyphenol interrupts the catalytic electron transfer pathway of the R2 protein by forming hydrogen bonds with Trp48 and Asp237, thus explaining the inhibitory activity of p-alkoxyphenols. 相似文献
6.
Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein–DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein–DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids. 相似文献
7.
Gramicidin A (gA) is prototypical peptide antibiotic and a model ion channel former. Configured in the solid-state NMR beta(6.5)-helix channel conformation, gA was subjected to 1-ns molecular dynamics (MD) gas phase simulations using the all-atom charmm22 force field to ascertain the conformational stability of the Trp side chains as governed by backbone and neighboring side-chain contacts. Three microcanonical trajectories were computed using different initial atomic velocities for each of twenty different initial structures. For each set, one of the four Trp side chains in each monomer was initially positioned in one of the five non-native conformations (A. E. Dorigo et al., Biophysical Journal, 1999, Vol. 76, 1897-1908), the other Trps being positioned in the native state, o1. In three additional control simulations, all Trps were initiated in the native conformation. After equilibration, constraints were removed and subsequent conformational changes of the initially constrained Trp were measured. The chi(1) was more flexible than chi(2.1). The energetically optimal orientation, o1 (Dorigo et al., 1999), was the most stable in all four Trp positions (9, 11, 13, 15) and remained unchanged for the entire 1 ns simulation in 19 of 24 trials. Changes in chi(1) from each of the 5 suboptimal states occur readily. Two of the non-native conformations reverted readily to o1, whereas the other three converted to an intermediate state, i2. There were frequent interconversions between i2 and o1. We speculate that experimentally observed Trp stability is caused by interactions with the lipid-water interface, and that stabilization of one of the suboptimal conformations in gA, such as i2, by lipid headgroups could produce a secondary, metastable conformational state. This could explain recent experimental studies of differences in the channel conductance dispersity between gA and a Trp-to-Phe gA analog, gramicidin M (gM, J. C. Markham et al., Biochimica et Biophysica Acta, 2001, Vol. 1513, 185-192). 相似文献
8.
Influence of the environment in the conformation of alpha-helices studied by protein database search and molecular dynamics simulations
下载免费PDF全文

The influence of the solvent on the main-chain conformation (phi and Psi dihedral angles) of alpha-helices has been studied by complementary approaches. A first approach consisted in surveying crystal structures of both soluble and membrane proteins. The residues of analysis were further classified as exposed to either the water (polar solvent) or the lipid (apolar solvent) environment or buried to the core of the protein (intermediate polarity). The statistical results show that the more polar the environment, the lower the value of phi(i) and the higher the value of Psi(i) are. The intrahelical hydrogen bond distance increases in water-exposed residues due to the additional hydrogen bond between the peptide carbonyl oxygen and the aqueous environment. A second approach involved nanosecond molecular dynamics simulations of poly-Ala alpha-helices in environments of different polarity: water to mimic hydrophilic environments that can form hydrogen bonds with the peptide carbonyl oxygen and methane to mimic hydrophobic environments without this hydrogen bond capabilities. These simulations reproduce similar effects in phi and Psi angles and intrahelical hydrogen bond distance and angle as observed in the protein survey analysis. The magnitude of the intrahelical hydrogen bond in the methane environment is stronger than in the water environment, suggesting that alpha-helices in membrane-embedded proteins are less flexible than in soluble proteins. There is a remarkable coincidence between the phi and Psi angles obtained in the analysis of residues exposed to the lipid in membrane proteins and the results from computer simulations in methane, which suggests that this simulation protocol properly mimic the lipidic cell membrane and reproduce several structural characteristics of membrane-embedded proteins. Finally, we have compared the phi and Psi torsional angles of Pro kinks in membrane protein crystal structures and in computer simulations. 相似文献
9.
Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations
下载免费PDF全文

The conversion of mechanical stress into a biochemical signal in a muscle cell requires a force sensor. Titin kinase, the catalytic domain of the elastic muscle protein titin, has been suggested as a candidate. Its activation requires major conformational changes resulting in the exposure of its active site. Here, force-probe molecular dynamics simulations were used to obtain insight into the tension-induced activation mechanism. We find evidence for a sequential mechanically induced opening of the catalytic site without complete domain unfolding. Our results suggest the rupture of two terminal beta-sheets as the primary unfolding steps. The low force resistance of the C-terminal relative to the N-terminal beta-sheet is attributed to their different geometry. A subsequent rearrangement of the autoinhibitory tail is seen to lead to the exposure of the active site, as is required for titin kinase activity. These results support the hypothesis of titin kinase as a force sensor. 相似文献
10.
Orientation and conformation of a lipase at an interface studied by molecular dynamics simulations
下载免费PDF全文

Jensen MØ Jensen TR Kjaer K Bjørnholm T Mouritsen OG Peters GH 《Biophysical journal》2002,83(1):98-111
Electron density profiles calculated from molecular dynamics trajectories are used to deduce the orientation and conformation of Thermomyces lanuginosa lipase and a mutant adsorbed at an air-water interface. It is demonstrated that the profiles display distinct fine structures, which uniquely characterize enzyme orientation and conformation. The density profiles are, on the nanosecond timescale, determined by the average enzyme conformation. We outline a computational scheme that from a single molecular dynamics trajectory allows for extraction of electron density profiles referring to different orientations of the lipase relative to an implicit interface. Profiles calculated for the inactive and active conformations of the lipase are compared with experimental electron density profiles measured by x-ray reflectivity for the lipase adsorbed at an air-water interface. The experimental profiles contain less fine structural information than the calculated profiles because the resolution of the experiment is limited by the intrinsic surface roughness of water. Least squares fits of the calculated profiles to the experimental profiles provide areas per adsorbed enzyme and suggest that Thermomyces lanuginosa lipase adsorbs to the air-water interface in a semiopen conformation with the lid oriented away from the interface. 相似文献
11.
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly suggest that the concepts of flexibility, rigidity and deformability are much more complex than usually believed, and that it is not always true that DNA is more flexible than RNA. 相似文献
12.
Malini Manoharan Patrick F.J. Fuchs 《Journal of biomolecular structure & dynamics》2013,31(11):1742-1751
Chemical recognition plays an important role for the survival and reproduction of many insect species. Odorant binding proteins (OBPs) are the primary components of the insect olfactory mechanism and have been documented to play an important role in the host-seeking mechanism of mosquitoes. They are “transport proteins” believed to transport odorant molecules from the external environment to their respective membrane targets, the olfactory receptors. The mechanism by which this transport occurs in mosquitoes remains a conundrum in this field. Nevertheless, OBPs have proved to be amenable to conformational changes mediated by a pH change in other insect species. In this paper, the effect of pH on the conformational flexibility of mosquito OBPs is assessed computationally using molecular dynamics simulations of a mosquito OBP “CquiOBP1” bound to its pheromone 3OG (PDB ID: 3OGN). Conformational twist of a loop, driven by a set of well-characterized changes in intramolecular interactions of the loop, is demonstrated. The concomitant (i) closure of what is believed to be the entrance of the binding pocket, (ii) expansion of what could be an exit site, and (iii) migration of the ligand towards this putative exit site provide preliminary insights into the mechanism of ligand binding and release of these proteins in mosquitoes. The correlation of our results with previous experimental observations based on NMR studies help us provide a cardinal illustration on one of the probable dynamics and mechanism by which certain mosquito OBPs could deliver their ligand to their membrane-bound receptors at specific pH conditions. 相似文献
13.
Ronak Y. Patel 《生物化学与生物物理学报:生物膜》2007,1768(6):1628-1640
The structure and dynamics of a single GM1 (Gal5-β1,3-GalNAc4-β1,4-(NeuAc3-α2,3)-Gal2-β1,4-Glc1-β1,1-Cer) embedded in a DPPC bilayer have been studied by MD simulations. Eleven simulations, each of 10 ns productive run, were performed with different initial conformations of GM1. Simulations of GM1-Os in water and of a DPPC bilayer were also performed to delineate the effects of the bilayer and GM1 on the conformational and orientational dynamics of each other. The conformation of the GM1 headgroup observed in the simulations is in agreement with those reported in literature; but the headgroup is restricted when embedded in the bilayer. NeuAc3 is the outermost saccharide towards the water phase. Glc1 and Gal2 prefer a parallel, and NeuAc3, GalNac4 and Gal5 prefer a perpendicular, orientation with respect to the bilayer normal. The overall characteristics of the bilayer are not affected by the presence of GM1; however, GM1 does influence the DPPC molecules in its immediate vicinity. The implications of these observations on the specific recognition and binding of GM1 embedded in a lipid bilayer by exogenous proteins as well as proteins embedded in lipids have been discussed. 相似文献
14.
The structure and dynamics of a single GM1 (Gal5-beta1,3-GalNAc4-beta1,4-(NeuAc3-alpha2,3)-Gal2-beta1,4-Glc1-beta1,1-Cer) embedded in a DPPC bilayer have been studied by MD simulations. Eleven simulations, each of 10 ns productive run, were performed with different initial conformations of GM1. Simulations of GM1-Os in water and of a DPPC bilayer were also performed to delineate the effects of the bilayer and GM1 on the conformational and orientational dynamics of each other. The conformation of the GM1 headgroup observed in the simulations is in agreement with those reported in literature; but the headgroup is restricted when embedded in the bilayer. NeuAc3 is the outermost saccharide towards the water phase. Glc1 and Gal2 prefer a parallel, and NeuAc3, GalNac4 and Gal5 prefer a perpendicular, orientation with respect to the bilayer normal. The overall characteristics of the bilayer are not affected by the presence of GM1; however, GM1 does influence the DPPC molecules in its immediate vicinity. The implications of these observations on the specific recognition and binding of GM1 embedded in a lipid bilayer by exogenous proteins as well as proteins embedded in lipids have been discussed. 相似文献
15.
Peräkylä M 《European biophysics journal : EBJ》2009,38(2):185-198
Molecular dynamics simulation techniques have been used to study the unbinding pathways of 1α,25-dihydroxyvitamin D3 from the ligand-binding pocket of the vitamin D receptor (VDR). The pathways observed in a large number of relatively short
(<200 ps) random acceleration molecular dynamics (RAMD) trajectories were found to be in fair agreement, both in terms of
pathway locations and deduced relative preferences, compared to targeted molecular dynamics (TMD) and streered molecular dynamics
simulations (SMD). However, the high-velocity ligand expulsions of RAMD tend to favor straight expulsion trajectories and
the observed relative frequencies of different pathways were biased towards the probability of entering a particular exit
channel. Simulations indicated that for VDR the unbinding pathway between the H1–H2 loop and the β-sheet between H5 and H6
is more favorable than the pathway located between the H1–H2 loop and H3. The latter pathway has been suggested to be the
most likely unbinding path for thyroid hormone receptors (TRs) and a likely path for retinoic acid receptor. Ligand entry/exit
through these two pathways would not require displacement of H12 from its agonistic position. Differences in the packing of
the H1, H2, H3 and β-sheet region explain the changed relative preference of the two unbinding pathways in VDR and TRs. Based
on the crystal structures of the ligand binding domains of class 2 nuclear receptors, whose members are VDR and TRs, this
receptor class can be divided in two groups according to the packing of the H1, H2, H3 and β-sheet region.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
16.
Role of water on unfolding kinetics of helical peptides studied by molecular dynamics simulations
下载免费PDF全文

Molecular dynamics simulations have been carried out with four polypeptides, Ala13, Val(13), Ser13, and Ala4Gly5Ala4, in vacuo and with explicit hydration. The unfolding of the polypeptides, which are initially fully alpha-helix in conformation, has been monitored during trajectories of 0.3 ns at 350 K. A rank of Ala < Val < Ser < Gly is found in the order of increasing rate of unwinding. The unfolding of Ala13 and Val(13) is completed in hundreds of picoseconds, while that of Ser13 is about one order of magnitude faster. The helix content of the peptide containing glycine residues falls to zero within a few picoseconds. Ramachandran plots indicate quite distinct equilibrium distributions and time evolution of dihedral angles in water and in vacuum for each residue type. The unfolding of polyalanine and polyvaline helices is accelerated due to solvation. In contrast, polyserine is more stable in water compared to vacuum, because its side chains can form intramolecular hydrogen bonds with the backbone more readily in vacuum, which disrupts the helix. Distribution functions of the spatial and angular position of water molecules in the proximity of the polypeptide backbone polar groups reveal the stabilization of the coiled structures by hydration. The transition from helix to coil is characterized by the appearance of a new peak in the probability distribution at a specific location characteristic of hydrogen bond formation between water and backbone polar groups. No significant insertion of water molecules is observed at the precise onset of unwinding, while (i, i+3) hydrogen bond formation is frequently detected at the initiation of alpha-helix unwinding. 相似文献
17.
Espinoza-Fonseca LM Pedretti A Vistoli G 《Archives of biochemistry and biophysics》2008,469(1):142-150
The three-dimensional structure of full-length structure of the M1 muscarinic receptor was obtained through the fragmental homology modeling procedure. A 10-ns molecular dynamics (MD) simulation of the protein imbedded in a lipid slab and surrounded by water molecules was further used to relax the model. It was found that the homology model corresponded to the conformation in the ground state, since no significant motions of the backbone of transmembrane domains were observed. Furthermore, the reliability of the model was validated by analyzing key inter-helical contacts, sidechain-sidechain interactions, the formation of stable aromatic microdomains (clusters) and the docking of acetylcholine to its binding site. Moreover, a few conserved interactions observed in the X-ray structure of rhodopsin, such as inter-helical sidechain-sidechain hydrogen bonds were accurately reproduced in the MD simulation. The coupling of ACh to its binding site was found to be dominated by π-cation and salt bridge interactions, while its conformational space was restrained through van der Waals and hydrogen bond interactions. In general, such features were in very good agreement with the available experimental as well as with theoretical data. Considering the above, the structural information obtained in this study can be used a starting point to investigate the activation mechanism of the receptor and the ability to develop selective agonists and allosteric modulators which could be used for the treatment of Alzheimer’s disease. 相似文献
18.
采用分子动力学方法和全原子模型研究尿素和水分子对模型蛋白S-肽链结构转化的影响。模拟结果显示S-肽链的变性速率常数k值随着尿素浓度的增加而先降低后升高,在尿素浓度为2.9 mol/L时达到最低值。模拟了不同尿素浓度下尿素-肽链、水-肽链以及肽链分子氢键的形成状况。结果表明:尿素浓度较低时,尿素分子与S-肽链的极性氨基酸侧链形成氢键,但不破坏其分子内的骨架氢键,尿素在S-肽链水化层外形成限制性空间,增强了S-肽链的稳定性。随着尿素的升高,尿素分子进入S-肽链内部并与其内部氨基酸残基形成氢键,导致S-肽链的骨架氢键丧失,S-肽链发生去折叠。上述模拟结果与文献报道的实验结果一致,从分子水平上揭示了尿素对蛋白质分子结构变化的影响机制,对于研究和发展蛋白质折叠及稳定化技术具有指导意义。 相似文献
19.
20.
Lill MA 《Biochemistry》2011,50(28):6157-6169
Flexibility and dynamics are protein characteristics that are essential for the process of molecular recognition. Conformational changes in the protein that are coupled to ligand binding are described by the biophysical models of induced fit and conformational selection. Different concepts that incorporate protein flexibility into protein-ligand docking within the context of these two models are reviewed. Several computational studies that discuss the validity and possible limitations of such approaches will be presented. Finally, different approaches that incorporate protein dynamics, e.g., configurational entropy, and solvation effects into docking will be highlighted. 相似文献