首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The measurement of peripheral blood flow by plethysmography assumes that the cuff pressure required for venous occlusion does not decrease arterial inflow. However, studies in five normal subjects suggested that calf blood flow measured with a plethysmograph was less than arterial inflow calculated from Doppler velocity measurements. We hypothesized that the pressure required for venous occlusion may have decreased arterial velocity. Further studies revealed that systolic diameter of the superficial femoral artery under a thigh cuff decreased from 7.7 +/- 0.4 to 5.6 +/- 0.7 mm (P less than 0.05) when the inflation pressure was increased from 0 to 40 mmHg. Cuff inflation to 40 mmHg also reduced mean velocity 38% in the common femoral artery and 47% in the popliteal artery. Inflation of a cuff on the arm reduced mean velocity in the radial artery 22% at 20 mmHg, 26% at 40 mmHg, and 33% at 60 mmHg. We conclude that inflation of a cuff on an extremity to low pressures for venous occlusion also caused a reduction in arterial diameter and flow velocity.  相似文献   

2.
Deconditioning is a risk factor for cardiovascular disease. The physiology of vascular adaptation to deconditioning has not been elucidated. The purpose of the present study was to assess the effects of bed rest deconditioning on vascular dimension and function of leg conduit arteries. In addition, the effectiveness of resistive vibration exercise as a countermeasure for vascular deconditioning during bed rest was evaluated. Sixteen healthy men were randomly assigned to bed rest (BR-Ctrl) or to bed rest with resistive vibration exercise (BR-RVE). Before and after 25 and 52 days of strict horizontal bed rest, arterial diameter, blood flow, flow-mediated dilatation (FMD), and nitroglycerin-mediated dilatation were measured by echo Doppler ultrasound. In the BR-Ctrl group, the diameter of the common femoral artery decreased by 13 +/- 3% after 25 and 17 +/- 1% after 52 days of bed rest (P < 0.001). In the BR-RVE group this decrease in diameter was significantly attenuated (5 +/- 2% after 25 days and 6 +/- 2% after 52 days, P < 0.01 vs. BR-Ctrl). Baseline blood flow did not change after bed rest in either group. After 52 days of bed rest, FMD and nitroglycerin-mediated dilatation of the superficial femoral artery were increased in both groups, possibly by increased nitric oxide sensitivity. In conclusion, bed rest deconditioning is accompanied by a reduction in the diameter of the conduit arteries and by an increased reactivity to nitric oxide. Resistive vibration exercise effectively attenuates the diameter decrease of leg conduit arteries after bed rest.  相似文献   

3.
Effects of spaceflight on human calf hemodynamics.   总被引:3,自引:0,他引:3  
Chronic microgravity may modify adaptations of the leg circulation to gravitational pressures. We measured resting calf compliance and blood flow with venous occlusion plethysmography, and arterial blood pressure with sphygmomanometry, in seven subjects before, during, and after spaceflight. Calf vascular resistance equaled mean arterial pressure divided by calf flow. Compliance equaled the slope of the calf volume change and venous occlusion pressure relationship for thigh cuff pressures of 20, 40, 60, and 80 mmHg held for 1, 2, 3, and 4 min, respectively, with 1-min breaks between occlusions. Calf blood flow decreased 41% in microgravity (to 1.15 +/- 0.16 ml x 100 ml(-1) x min(-1)) relative to 1-G supine conditions (1.94 +/- 0.19 ml x 100 ml(-1) x min(-1), P = 0.01), and arterial pressure tended to increase (P = 0.05), such that calf vascular resistance doubled in microgravity (preflight: 43 +/- 4 units; in-flight: 83 +/- 13 units; P < 0.001) yet returned to preflight levels after flight. Calf compliance remained unchanged in microgravity but tended to increase during the first week postflight (P > 0.2). Calf vasoconstriction in microgravity qualitatively agrees with the "upright set-point" hypothesis: the circulation seeks conditions approximating upright posture on Earth. No calf hemodynamic result exhibited obvious mechanistic implications for postflight orthostatic intolerance.  相似文献   

4.
Space-flight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), cause cardiovascular deconditioning in humans. Because sympathetic vasoconstriction plays a very important role in circulation, we examined whether HDBR impairs alpha-adrenergic vascular responsiveness to sympathetic nerve activity. We subjected eight healthy volunteers to 14 days of HDBR and before and after HDBR measured calf muscle sympathetic nerve activity (MSNA; microneurography) and calf blood flow (venous occlusion plethysmography) during sympathoexcitatory stimulation (rhythmic handgrip exercise). HDBR did not change the increase in total MSNA (P = 0.97) or the decrease in calf vascular conductance (P = 0.32) during exercise, but it did augment the increase in calf vascular resistance (P = 0.0011). HDBR augmented the transduction gain from total MSNA into calf vascular resistance, assessed as the least squares linear regression slope of vascular resistance on total MSNA (0.05 +/- 0.02 before HDBR, 0.20 +/- 0.06 U.min-1.burst-1 after HDBR, P = 0.0075), but did not change the transduction gain into calf vascular conductance (P = 0.41). Our data indicate that alpha-adrenergic vascular responsiveness to sympathetic nerve activity is preserved in the supine position after HDBR in humans.  相似文献   

5.
Postural tachycardia syndrome (POTS) is defined by orthostatic intolerance associated with abnormal upright tachycardia. Some patients have defective peripheral vasoconstriction and increased calf blood flow. Others have increased peripheral arterial resistance and decreased blood flow. In 14 POTS patients (13-19 yr) evenly subdivided among low-flow POTS (LFP) and high-flow POTS (HFP) we tested the hypothesis that myogenic, venoarteriolar, and reactive hyperemic responses are abnormal. We used venous occlusion plethysmography to measure calf venous pressure and blood flow in the supine position and when the calf was lowered by 40 cm to evoke myogenic and venoarteriolar responses and during venous hypertension by 40-mmHg occlusion to evoke the venoarteriolar response. We measured calf reactive hyperemia with plethysmography and cutaneous laser-Doppler flowmetry. Baseline blood flow in LFP was reduced compared with HFP and control subjects (0.8 +/- 0.2 vs. 4.4 +/- 0.5 and 2.7 +/- 0.4 ml.min-1.100 ml-1) but increased during leg lowering (1.2 +/- 0.5 ml.min-1. 100 ml-1) while decreasing in the others. Baseline peripheral arterial resistance was increased in LFP and decreased in HFP compared with control subjects (39 +/- 13 vs. 15 +/- 3 and 22 +/- 5 mmHg.ml-1. 100 ml. min) but decreased to 29 +/- 13 mmHg.ml-1.100 ml. min in LFP during venous hypertension. Resistance increased in the other groups. Maximum calf hyperemic flow and cutaneous flow were similar in all subjects. The duration of hyperemic blood flow was curtailed in LFP compared with either control or HFP subjects (plethysmographic time constant = 20 +/- 2 vs. 29 +/- 4 and 28 +/- 4 s; cutaneous time constant = 60 +/- 25 vs. 149 +/- 53 s in controls). Local blood flow regulation in low-flow POTS is impaired.  相似文献   

6.
Extreme inactivity of the legs in spinal cord-injured (SCI) individuals does not result in an impairment of the superficial femoral artery flow-mediated dilation (FMD). To gain insight into the underlying mechanism, the present study examined nitric oxide (NO) responsiveness of vascular smooth muscles in controls and SCI subjects. In eight healthy men (34 +/- 13 yr) and six SCI subjects (37 +/- 10 yr), superficial femoral artery FMD response was assessed by echo Doppler. Subsequently, infusion of incremental dosages of sodium nitroprusside (SNP) was used to assess NO responsiveness. Peak diameter was examined on a second day after 13 min of arterial occlusion in combination with sublingual administration of nitroglycerine. Resting and peak superficial femoral artery diameter in SCI subjects were smaller than in controls (P < 0.001). The FMD response in controls (4.2 +/- 0.9%) was lower than in SCI subjects (8.2 +/- 0.9%, P < 0.001), but not after correcting for area under the curve for shear rate (P = 0.35). When expressed as relative change from baseline, SCI subjects demonstrate a significantly larger diameter increase compared with controls at each dose of SNP. However, when expressed as a relative increase within the range of diameter changes [baseline (0%) - peak diameter (100%)], both groups demonstrate similar changes in response to SNP. Changes in diameter during SNP infusion and FMD response are larger in SCI subjects compared with controls. When these results are corrected, superficial femoral artery FMD and NO sensitivity in SCI subjects are not different from those in controls. This illustrates the importance of appropriate data presentation and suggests that, subsequent to structural inward remodeling of conduit arteries as a consequence of extreme physical inactivity, arterial function is normalized.  相似文献   

7.
We tested the hypothesis that the oral alpha1-adrenergic agonist, midodrine, would limit the fall in arterial pressure observed during exercise in patients with pure autonomic failure (PAF). Fourteen subjects with PAF underwent a stand test, incremental supine cycling exercise (25, 50, and 75 W), and ischemic calf exercise, before (control) and 1 h after ingesting 10 mg midodrine. Heart rate (ECG), beat-to-beat blood pressure (MAP, arterial catheter), cardiac output (Q, open-circuit acetylene breathing), forearm blood flow (FBF, Doppler ultrasound), and calf blood flow (CBF, venous occlusion plethysmography) were measured. The fall in MAP after standing for 2 min was similar ( approximately 60 mmHg; P = 0.62). Supine MAP immediately before cycling was greater after midodrine (124 +/- 6 vs 117 +/- 6 mmHg; P < 0.03), but cycling caused a workload-dependent hypotension (P < 0.001), whereas increases in Q were modest but similar. Midodrine increased MAP and total peripheral resistance (TPR) during exercise (P < 0.04), but the exercise-induced fall in MAP and TPR were similar during control and midodrine (P = 0.27 and 0.14). FBF during cycling was not significantly reduced by midodrine (P > 0.2). By contrast, recovery of MAP after cycling was faster (P < 0.04) after midodrine ( approximately 25 mmHg higher after 5 min). Ischemic calf exercise evoked similar peak CBF in both trials, but midodrine reduced the hyperemic response over 5 min of recovery (P < 0.02). We conclude midodrine improves blood pressure and TPR during exercise and dramatically improves the recovery of MAP after exercise.  相似文献   

8.
The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.  相似文献   

9.
The purpose of this study is to develop a new method for the measurement in humans of the compliance of the microvascular superficial venous system of the lower limb by near-infrared spectroscopy (NIRS). This method is complementary to strain-gauge plethysmography, which does not allow compliance between deep and superficial venous or between venous and arterial compartments to be distinguished. In practice, hydrostatic pressure (P) changes were induced in a calf region of interest by head-up tilt of the subject from alpha = -10 to 75 degrees. For P < or = 24 mmHg, the measured compliance [0.086 +/- 0.005 (SD) ml. l(-1). mmHg(-1)] based on NIRS data of total, deoxygenated, and oxygenated hemoglobin, reflects essentially that of the superficial venous system. For P > or = 24 mmHg, no distinction can be made between arterial and venous volumes changes. However, by following the changes in oxy- and deoxyhemoglobin in the P range -16 to 100 mmHg, it appears to be possible to assess the characteristics of the vasomotor response of the arteriolar system.  相似文献   

10.
An air plethysmograph with a sensitive phototransducer was constructed so that plethysmographic volume-change pulsations could be displayed in detail without using venous occlusion. Software was developed to allow analysis of the pulses using a modification of the backward extrapolation technique. This allowed calculation of the forward arterial blood flow and noninvasive derivation of the resting arterial flow waveform. There is good reproducibility of the technique, with 8% variability between pairs of measurements at rest and 4% variability after hand exercise. Direct comparison made with blood flows measured by venous occlusion plethysmography showed good average agreement. The mean blood flow for venous occlusion (rest and exercise) was 0.76 +/- 0.07 mL/beat (mean +/- SEM), and the mean blood flow for backward extrapolation (rest and exercise) was 0.74 +/- 0.09 mL/beat (mean +/- SEM). This corresponds to 3.86 +/- 0.36 mL/min/100 mL and 3.76 +/- 0.46 mL/min/100 mL, respectively. Important assumptions when using this method are that venous return is constant and that forward arterial flow is over before the end of the cardiac cycle.  相似文献   

11.
We evaluated whether the increase in blood lactate with intense exercise is influenced by a low hepatosplanchnic blood flow as assessed by indocyanine green dye elimination and blood sampling from an artery and the hepatic vein in eight men. The hepatosplanchnic blood flow decreased from a resting value of 1.6 +/- 0.1 to 0.7 +/- 0.1 (SE) l/min during exercise. Yet the hepatosplanchnic O2 uptake increased from 67 +/- 3 to 93 +/- 13 ml/min, and the output of glucose increased from 1.1 +/- 0.1 to 2.1 +/- 0.3 mmol/min (P < 0.05). Even at the lowest hepatosplanchnic venous hemoglobin O2 saturation during exercise of 6%, the average concentration of glucose in arterial blood was maintained close to the resting level (5.2 +/- 0.2 vs. 5.5 +/- 0.2 mmol/l), whereas the difference between arterial and hepatic venous blood glucose increased to a maximum of 22 mmol/l. In arterial blood, the concentration of lactate increased from 1.1 +/- 0.2 to 6.0 +/- 1.0 mmol/l, and the hepatosplanchnic uptake of lactate was elevated from 0.4 +/- 0.06 to 1.0 +/- 0.05 mmol/min during exercise (P < 0.05). However, when the hepatosplanchnic venous hemoglobin O2 saturation became low, the arterial and hepatosplanchnic venous blood lactate difference approached zero. Even with a marked reduction in its blood flow, exercise did not challenge the ability of the liver to maintain blood glucose homeostasis. However, it appeared that the contribution of the Cori cycle decreased, and the accumulation of lactate in blood became influenced by the reduced hepatosplanchnic blood flow.  相似文献   

12.
Given the increasing emphasis on performance of resistance exercise as an essential component of health, we evaluated, using a prospective longitudinal design, the potential for resistance training to affect arterial endothelial function. Twenty-eight men (23 +/- 3.9 yr old; mean +/- SE) engaged in 12 wk of whole body resistance training five times per week using a repeating split-body 3-day cycle. Brachial endothelial function was measured using occlusion cuff-induced flow-mediated dilation. After occlusion of the forearm for 4.5 min, brachial artery dilation and postocclusion blood flow was measured continuously for 15 and 70 s, respectively. Peak and 10-s postocclusion blood flow, shear rate, and brachial artery flow-mediated dilation (relative and normalized to shear rate) were measured pretraining (Pre), at 6 wk of training (Mid), and at 13 wk of training (Post). Results indicated an increase of mean brachial artery diameter by Mid and Post vs. Pre. Peak and 10-s postocclusion blood flow increased by Mid and remained elevated at Post; however, shear rates were not different at any time point. Relative and normalized flow-mediated dilation was also not different at any time point. This study is the first to show that peripheral arterial remodeling does occur with resistance training in healthy young men. In addition, the increase in postocclusion blood flow may indicate improved resistance vessel function. However, unlike studies involving endurance training, flow-mediated dilation did not increase with resistance training. Thus arterial adaptations with high-pressure loads, such as those experienced during resistance exercise, may be quite different compared with endurance training.  相似文献   

13.
Aging and chronic exercise training influence leg venous compliance. Venous compliance affects responses to an orthostatic stress. The extent to which exercise training in a previously sedentary older population will affect venous compliance and tolerance to the simulated orthostatic stress of maximal lower body negative pressure (LBNP) is unknown. The purpose of this investigation is to determine the influence of a 6-mo endurance-training program on calf venous compliance and responses and tolerance to maximal LBNP in older men and women. Twenty participants (exercise group: n = 10, 5 men, 5 women; control group: n = 10, 6 men, 4 women; all >60 yr) underwent graded LBNP to presyncope or 4 min at -100 mmHg before and after a 6-mo endurance-training program. Utilizing venous occlusion plethysmography, calf venous compliance was determined in both groups using the first derivative of the pressure-volume relation during cuff pressure reduction before training, at 3 mo, and at the end of the training program. The exercise group improved their fitness with the 6-mo endurance-training program, whereas the control group did not change (14 +/- 3 vs. <1 +/- 2%; P < 0.05). LBNP tolerance did not differ between groups or across trials (P = 0.47). Venous compliance was not different between groups or trials, either initially or after 3 mo of endurance training, but tended to be greater in the exercise group after 6 mo of training (P = 0.08). These data suggest that a 6-mo endurance-training program may improve venous compliance without affecting tolerance to maximal LBNP in older participants.  相似文献   

14.
Physical inactivity is associated with an increase in cardiovascular risk that cannot be fully explained by traditional or novel risk factors. Inactivity is also associated with changes in hemodynamic stimuli, which exert direct effects on the vasculature leading to remodeling and a proatherogenic phenotype. In this review, we synthesize and summarize in vivo evidence relating to the impact of local and systemic models of physical inactivity on conduit arteries, resistance vessels, and the microcirculation in humans. Taken together, the literature suggests that a rapid inward structural remodeling of vessels occurs in response to physical inactivity. The magnitude of this response is dependent on the "dose" of inactivity. Moreover, changes in vascular function are found at resistance and microvessel levels in humans. In conduit arteries, a strong interaction between vascular function and structure is present, which results in conflicting data regarding the impact of inactivity on conduit artery function. While much of the cardioprotective effect of exercise is related to the nitric oxide pathway, deconditioning may primarily be associated with activation of vasoconstrictor pathways. The effects of deconditioning on the vasculature are therefore not simply the opposite of those in response to exercise training. Given the importance of sedentary behavior, future studies should provide further insight into the impact of inactivity on the vasculature and other (novel) markers of vascular health. Moreover, studies should examine the role of (hemodynamic) stimuli that underlie the characteristic vascular adaptations during deconditioning. Our review concludes with some suggestions for future research directions.  相似文献   

15.
The mechanisms by which obstructive apneas produce intermittent surges in arterial pressure remain poorly defined. To determine whether termination of obstructive apneas produce peripheral vasoconstriction, we assessed forearm blood flow during and after obstructive events in sleeping patients experiencing spontaneous upper airway obstructions. In all subjects, heart rate was monitored with an electrocardiogram and blood pressure was monitored continuously with digital plethysmography. In 10 patients (protocol 1), we used forearm plethysmography to assess forearm blood flow, from which we calculated forearm vascular resistance by performing venous occlusions during and after obstructive episodes. In an additional four subjects, we used simultaneous Doppler and B-mode images of the brachial artery to measure blood velocity and arterial diameter, from which we calculated brachial flow continuously during spontaneous apneas (protocol 2). In protocol 1, forearm vascular resistance increased 71% after apnea termination (29.3 +/- 15.4 to 49.8 +/- 26.5 resistance units, P < 0.05) with all patients showing an increase in resistance. In protocol 2, brachial resistance increased at apnea termination in all subjects (219.8 +/- 22.2 to 358.3 +/- 46.1 mmHg x l(-1) x min; P = 0.01). We conclude that termination of obstructive apneas is associated with peripheral vasoconstriction.  相似文献   

16.
Aging and chronic exercise training influence leg venous compliance. Venous compliance affects responses to an orthostatic stress; its effect on tolerance to maximal lower body negative pressure (LBNP) in the elderly is unknown. The purpose of this study was to determine the influence of age and fitness, a surrogate measure of exercise training, on calf venous compliance and tolerance to maximal LBNP in men and women. Forty participants, 10 young fit (YF; age = 22.6 +/- 0.5 yr, peak oxygen uptake = 57.1 +/- 2.0 ml.kg(-1).min(-1)), 10 young unfit (YU; 23.1 +/- 1.0 yr, 41.1 +/- 2.0 ml.kg(-1).min(-1)), 10 older fit (OF; 73.9 +/- 2.0 yr, 39.0 +/- 2.0 ml.kg(-1).min(-1)), and 10 older unfit (OU; 70.9 +/- 1.6 yr, 27.1 +/- 2.0 ml.kg(-1).min(-1)), underwent graded LBNP to presyncope or 4 min at -100 mmHg. By utilizing venous occlusion plethysmography, calf venous compliance was determined by using the first derivative of the pressure-volume relation during cuff pressure reduction. We found that the more fit groups had greater venous compliance than their unfit peers (P < 0.05) as did the young groups compared with their older peers (P < 0.05) such that OU < YU = OF < YF. LBNP tolerance did not differ between groups. In conclusion, these data suggest that aging reduces, and chronic exercise increases, venous compliance. However, these data do not support a significant influence of venous compliance on LBNP tolerance.  相似文献   

17.
The purpose of this study was to determine whether blood flow (BF) and vascular resistance (VR) are controlled differently in the nonactive arm and leg during submaximal rhythmic exercise. In eight healthy men we simultaneously measured BF to the forearm and calf (venous occlusion plethysmography) and arterial blood pressure (sphygmomanometry) and calculated whole limb VR before (control) and during 3 min of cycling with the contralateral leg at 38, 56, and 75% of peak one-leg O2 uptake (VO2). During the initial phase of exercise (0-1.5 min) at all work loads, BF increased and VR decreased in the forearm (P less than 0.05), whereas calf BF and VR remained at control levels. Thereafter, BF decreased and VR increased in parallel and progressive fashion in both limbs. At end exercise, forearm BF and VR were not different from control values (P greater than 0.05); however, in the calf, BF tended to be lower (P less than 0.05 at 75% peak VO2 only) and VR was higher (23 +/- 9, 44 +/- 14, and 88 +/- 23% above control at 38, 56, and 75% of peak VO2, respectively, all P less than 0.05). In a second series of studies, forearm and calf skin blood flow (laser-Doppler velocimetry) and arterial pressure were measured during the same levels of exercise in six of the subjects. Compared with control, skin BF was unchanged and VR was increased (P less than 0.05) in the forearm by end exercise at all work loads, whereas calf skin BF increased (P less than 0.05) and VR decreased (P less than 0.05). The present findings indicate that skeletal muscle and skin VR are controlled differently in the nonactive forearm and calf during the initial phase of rhythmic exercise with the contralateral leg. Skeletal muscle vasodilation occurs in the forearm but not in the calf; forearm skin vasoconstricts, whereas calf skin vasodilates. Finally, during exercise a time-dependent vasoconstriction occurs in the skeletal muscle of both limbs.  相似文献   

18.
In an effort to evaluate potential peripheral adaptations to training, maximal metabolic vasodilation was studied in the dominant and nondominant forearms of six tennis players and six control subjects. Maximal metabolic vasodilation was defined as the peak forearm blood flow measured after release of arterial occlusion, the reactive hyperemic blood flow (RHBF). Two ischemic stimuli were employed in each subject: 5 min of arterial occlusion (RHBF5) and 5 min of arterial occlusion coupled with 1 min of ischemic exercise (RHBF5ex). RHBF and resting forearm blood flows were measured using venous occlusion strain-gauge plethysmography (ml X min-1 X 100 ml-1). Resting forearm blood flows were similar in both arms of both groups. RHBF5ex was similar in both arms of our control group (dominant, 40.8 +/- 1.2 vs. nondominant, 40.9 +/- 2.1). However, RHBF5ex was 42% higher in the dominant than in the nondominant forearms of our tennis player population (dominant, 48.7 +/- 4.0 vs. nondominant, 34.4 +/- 3.4; P less than 0.05). This intraindividual difference in peak forearm blood flows was not secondary to improved systemic conditioning since the maximal O2 consumptions in the two study groups were similar (controls, 45.4 +/- 3.9 vs. tennis players, 46.1 +/- 1.7). These findings suggest a primary peripheral cardiovascular adaptation to exercise training in the dominant forearms of the tennis players resulting in a greater maximal vasodilatation.  相似文献   

19.
Experiments were performed to assess the possible neurally mediated constriction in active skeletal muscle during isometric hand-grip contractions. Forearm blood flow was measured by venous occlusion plethysmography on 5 volunteers who exerted a series of repeated contractions of 4 s duration every 12 s at 60% of their maximum strength of fatigue. The blood flows increased initially, but then remained constant at 20-24 ml X min(-1) X 100 ml(-1) throughout the exercise even though mean arterial blood pressure reached 21-23 kPa (160-170 mm Hg). When the same exercise was performed after arterial infusion of phentolamine, forearm blood flow increased steadily to near maximal levels of 38.7 +/- 1.4 ml X min(-1) X 100 ml(-1). Venous catecholamines, principally norepinephrine, increased throughout exercise, reaching peak values of 983 +/- 258 pg X ml(-1) at fatigue. Of the vasoactive substances measured, the concentration of K+ and osmolarity in venous plasma also increased initially and reached a steady-state during the exercise but ATP increased steadily throughout the exercise. These data indicate a continually increasing alpha-adrenergic constriction to the vascular beds in active muscles in the human forearm during isometric exercise, that is only partially counteracted by vasoactive metabolites.  相似文献   

20.
Ion concentration changes in whole blood, plasma, and erythrocytes across inactive muscle were examined in eight healthy males performing four 30-s bouts of maximal isokinetic cycling with 4 min rest between each bout. Blood was sampled from the arm brachial artery and deep antecubital vein during the intermittent exercise period and for 90 min of recovery. Arterial and venous erythrocyte lactate concentration ([Lac-]) increased from 0.3 +/- 0.1 to 12.5 +/- 1.3 (p < 0.01) and 1.1 +/- 0.4 to 8.5 +/- 1.5 mmol/L (p < 0.01), respectively, returning to control values during recovery. Arterial and venous plasma [Lac-] increased from 1.5 +/- 0.2 to 27.7 +/- 1.8 and from 1.3 +/- 0.4 to 25.7 +/- 3.5 mmol/L, respectively, and was greater than erythrocyte [Lac-] throughout exercise and recovery. Arterial and venous [K+] increased in erythrocytes from 119.5 +/- 5.1 to 125.4 +/- 4.6 (p < 0.01) and from 113.6 +/- 1.7 to 120.6 +/- 7.1 mmol/L, respectively, decreasing to control during recovery. In arterial and venous plasma, [K+] increased from 4.3 +/- 0.1 to 6.1 +/- 0.2 (p < 0.01) and from 4.5 +/- 0.2 to 5.3 +/- 0.2 mmol/L (p < 0.01), respectively, decreasing to control during recovery. The efflux of Lac- out of erythrocytes against an electrochemical concentration gradient suggests the presence of an active transport system. Efflux of K+ from erythrocytes as blood passes across inactive muscle affords an important adaptation to the K+ release from muscle activated in heavy exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号