首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that the maximum mechanical power outputs that can be maintained during all-out sprint cycling efforts lasting from a few seconds to several minutes can be accurately estimated from a single exponential time constant (k(cycle)) and two measurements on individual cyclists: the peak 3-s power output (P(mech max)) and the maximum mechanical power output that can be supported aerobically (P(aer)). Tests were conducted on seven subjects, four males and three females, on a stationary cycle ergometer at a pedal frequency of 100 rpm. Peak mechanical power output (P(mech max)) was the highest mean power output attained during a 3-s burst; the maximum power output supported aerobically (P(aer)) was determined from rates of oxygen uptake measured during a progressive, discontinuous cycling test to failure. Individual power output-duration relationships were determined from 13 to 16 all-out constant load sprints lasting from 5 to 350 s. In accordance with the above hypothesis, the power outputs measured during all-out sprinting efforts were estimated to within an average of 34 W or 6.6% from P(mech max), P(aer), and a single exponential constant (k(cycle) = 0.026 s(-1)) across a sixfold range of power outputs and a 70-fold range of sprint trial durations (R2 = 0.96 vs. identity, n = 105; range: 180 to 1,136 W). Duration-dependent decrements in sprint cycling power outputs were two times greater than those previously identified for sprint running speed (k(run) = 0.013 s(-1)). When related to the respective times of pedal and ground force application rather than total sprint time, decrements in sprint cycling and running performance followed the same time course (k = 0.054 s(-1)). We conclude that the duration-dependent decrements in sprinting performance are set by the fractional duration of the relevant muscular contractions.  相似文献   

2.
The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.  相似文献   

3.
ABSTRACT: Burden, RJ and Glaister, M. The effects of ionized and nonionized compression garments on sprint and endurance cycling. J Strength Cond Res 26(10): 2837-2843, 2012-The aim of this study was to examine the effects of ionized and nonionized compression tights on sprint and endurance cycling performance. Using a randomized, blind, crossover design, 10 well-trained male athletes (age: 34.6 ± 6.8 years, height: 1.80 ± 0.05 m, body mass: 82.2 ± 10.4 kg, V[Combining Dot Above]O2max: 50.86 ± 6.81 ml·kg·min) performed 3 sprint trials (30-second sprint at 150% of the power output required to elicit V[Combining Dot Above]O2max [pV[Combining Dot Above]O2max] + 3 minutes recovery at 40% pV[Combining Dot Above]O2max + 30-second Wingate test + 3 minutes recovery at 40% pV[Combining Dot Above]O2max) and 3 endurance trials (30 minutes at 60% pV[Combining Dot Above]O2max + 5 minutes stationary recovery + 10-km time trial) wearing nonionized compression tights, ionized compression tights, or standard running tights (control). There was no significant effect of garment type on key Wingate measures of peak power (grand mean: 1,164 ± 219 W, p = 0.812), mean power (grand mean: 716 ± 68 W, p = 0.800), or fatigue (grand mean: 66.5 ± 6.9%, p = 0.106). There was an effect of garment type on blood lactate in the sprint and the endurance trials (p < 0.05), although post hoc tests only detected a significant difference between the control and the nonionized conditions in the endurance trial (mean difference: 0.55 mmol·L, 95% likely range: 0.1-1.1 mmol·L). Relative to control, oxygen uptake (p = 0.703), heart rate (p = 0.774), and time trial performance (grand mean: 14.77 ± 0.74 minutes, p = 0.790) were unaffected by either type of compression garment during endurance cycling. Despite widespread use in sport, neither ionized nor nonionized compression tights had any significant effect on sprint or endurance cycling performance.  相似文献   

4.
Sustained aerobic exercise not only affects the rate of force development but also decreases peak power development. The aim of this study was to investigate whether anaerobic power of amateur mountain bikers changes during the first half of the competition season. Eight trained cyclists (mean ± SE: age: 22.0 ±0.5 years; height: 174.6 ± 0.9 cm; weight: 70.7 ± 2.6 kg) were subjected to an ergocycle incremental exercise test and to the Wingate test on two occasions: before, and in the middle of the season. After the incremental exercise test the excess post-exercise oxygen consumption was measured during 5-min recovery. Blood lactate concentration was measured in the 4th min after the Wingate test. Maximum oxygen uptake increased from 60.0 ± 1.5 ml min-1 kg-1 at the beginning of the season to 65.2 ± 1.4 ml min-1 kg-1 (P < 0.05) in the season. Neither of the mechanical variables of the Wingate test nor excess post-exercise oxygen consumption values were significantly different in these two measurements. However, blood lactate concentration was significantly higher (P < 0.001) in season (11.0 ± 0.5 mM) than before the season (8.6 ± 0.4 mM). It is concluded that: 1) despite the increase of cyclists’ maximum oxygen uptake during the competition season their anaerobic power did not change; 2) blood lactate concentration measured at the 4th min after the Wingate test does not properly reflect training-induced changes in energy metabolism.  相似文献   

5.
Influence of hip orientation on Wingate power output and cycling technique   总被引:1,自引:0,他引:1  
The effect of altered hip orientation angle ([HOA] angle of hip joint center to bottom bracket relative to horizontal) on Wingate anaerobic test results and cycling technique while maintaining a constant body configuration angle (included angle between torso, hip, and bottom bracket) and maximum hip-to-pedal distance was examined. Nineteen recreational cyclists, all men, with no recent recumbent cycling experience completed 30-second Wingate tests in 3 recumbent positions (HOA = -20 degrees, -10 degrees, and 0 degrees ) and the standard cycling position (SCP) (HOA = 75 degrees ). Peak, average, and minimum power output, as well as fatigue index, were not significantly different across all positions (p < 0.01). Average hip and knee extension angles increased slightly, and ankle angle did not change as HOA increased. These findings indicate that although HOA does have a small effect on cycling kinematics, these effects are not large enough to alter short-term power output. Therefore, anaerobic power output may be evaluated and compared in the recumbent positions and the SCP.  相似文献   

6.
The purpose of this study was to identify off-ice variables that would correlate to on-ice skating sprint performance and cornering ability. Previous literature has not reported any off-ice testing variables that strongly correlate to on-ice cornering ability in ice hockey players. Thirty-six male hockey players aged 15-22 years (mean +/- SD: 16.3 +/- 1.7 years; weight = 70.8 +/- 10.4 kg; height = 175.6 +/- 4.1 cm) with an average of 10.3 +/- 3.0 years hockey playing experience (most at AA and AAA levels) participated in the study. The on-ice tests included a 35-m sprint and the cornering S test. The off-ice tests included the following: 30-m sprint, vertical jump, broad jump, 3 hop jump, Edgren side shuffle, Hexagon agility, side support, push-ups, and 15-second modified Wingate. The on-ice sprint test and cornering S test were strongly correlated (r = 0.70; p < 0.001). While many off-ice tests correlated with on-ice skating, measures of horizontal leg power (off-ice sprint and 3 hop jump) were the best predictors of on-ice skating performance, once weight and playing level were accounted for. These 4 variables accounted for a total of 78% (p < 0.0001) of the variance in on-ice sprint performance. No off-ice test accounted for unique variance in S-cornering performance beyond weight, playing level, and skating sprint performance. These data indicate that coaches should include horizontal power tests of off-ice sprint and 3 hop jump to adequately assess skating ability. To improve on-ice skating performance and cornering ability, coaches should also focus on the development of horizontal power through specific off-ice training, although future research will determine whether off-ice improvements in horizontal power directly transfer to improvements in on-ice skating.  相似文献   

7.
The purpose of this study was to examine the effects of cold-water immersion on power output, heart rate, and time to peak power in 10 well-trained cyclists. The Compu-trainer Professional Model 8001 computerized stationary trainer was used to evaluate maximum power, average power, and time to peak power during a simulated cycling sprint. The heart rate was measured using a Polar heart rate monitor. Subjects performed 2 maximum-effort sprints (for approximately 30 seconds) separated by either an experimental condition (15 minutes of cold-water immersion at 12 degrees C up to the level of the iliac crest) or a control condition (15 minutes of quiet sitting). All subjects participated under both control and experimental conditions in a counterbalanced design in which 5 subjects performed the experimental condition first and the other 5 subjects performed the control condition first. Each condition was separated by at least 2 days. The time to peak power was not different between the 2 conditions. Maximum and average powers declined by 13.7 and 9.5% for the experimental condition but only by 4.7 and 2.3% for the control condition, respectively. The results also demonstrated a significantly greater decline in maximum heart rate after cold-water immersion (8.1%) than under the control condition (2.4%). Average heart rate showed a decrease of 4.2% under the experimental condition, as compared with an increase of 1.5% under the control condition. The major findings of this study suggest that a relatively brief period of cold-water immersion can manifest significant physiological effects that can impair cycling performance.  相似文献   

8.
The traditional warm-up (WU) used by athletes to prepare for a sprint track cycling event involves a general WU followed by a series of brief sprints lasting ≥ 50 min in total. A WU of this duration and intensity could cause significant fatigue and impair subsequent performance. The purpose of this research was to compare a traditional WU with an experimental WU and examine the consequences of traditional and experimental WU on the 30-s Wingate test and electrically elicited twitch contractions. The traditional WU began with 20 min of cycling with a gradual intensity increase from 60% to 95% of maximal heart rate; then four sprints were performed at 8-min intervals. The experimental WU was shorter with less high-intensity exercise: intensity increased from 60% to 70% of maximal heart rate over 15 min; then just one sprint was performed. The Wingate test was conducted with a 1-min lead-in at 80% of optimal cadence followed by a Wingate test at optimal cadence. Peak active twitch torque was significantly lower after the traditional than experimental WU (86.5 ± 3.3% vs. 94.6 ± 2.4%, P < 0.05) when expressed as percentage of pre-WU amplitude. Wingate test performance was significantly better (P < 0.01) after experimental WU (peak power output = 1,390 ± 80 W, work = 29.1 ± 1.2 kJ) than traditional WU (peak power output = 1,303 ± 89 W, work = 27.7 ± 1.2 kJ). The traditional track cyclist's WU results in significant fatigue, which corresponds with impaired peak power output. A shorter and lower-intensity WU permits a better performance.  相似文献   

9.
The purposes of this study were firstly to determine the relationship between the peak power output (Wpeak) and maximal oxygen uptake (VO2max) attained during a laboratory cycling test to exhaustion, and secondly to assess the relationship between Wpeak and times in a 20-km cycling trial. One hundred trained cyclists (54 men, 46 women) participated in the first part of this investigation. Each cyclist performed a minimum of one maximal test during which Wmax and VO2max were determined. For the second part of the study 19 cyclists completed a maximal test for the determination of Wpeak, and also a 20-km cycling time trial. Highly significant relationships were obtained between Wpeak and VO2max (r = 0.97, P less than 0.0001) and between Wpeak and 20-km cycle time (r = -0.91, P less than 0.001). Thus, Wpeak explained 94% of the variance in measured VO2max and 82% of the variability in cycle time over 20 km. We concluded that for trained cyclists, the VO2max can be accurately predicted from Wpeak, and that Wpeak is a valid predictor of 20-km cycle time.  相似文献   

10.
The purpose of this study was to identify whether there was a relationship between relative strength during a 1 repetition maximum (1RM) back squat and 5-, 10-, and 20-m sprint performances in both trained athletes and recreationally trained individuals. Professional rugby league players (n = 24) and recreationally trained individuals (n = 20) participated in this investigation. Twenty-meter sprint time and 1RM back squat strength, using free weights, were assessed on different days. There were no significant (p ≥ 0.05) differences between the well-trained and recreationally trained groups for 5-m sprint times. In contrast, the well-trained group's 10- and 20-m sprint times were significantly quicker (p = 0.004; p = 0.002) (1.78 + 0.06 seconds; 3.03 + 0.09 seconds) compared with the recreationally trained group (1.84 + 0.07 seconds; 3.13 + 0.11 seconds). The athletes were significantly stronger (170.63 + 21.43 kg) than the recreationally trained individuals (135.45 + 30.07 kg) (p = 0.01); however, there were no significant differences (p > 0.05) in relative strength between groups (1.78 + 0.27 kg/kg; 1.78 + 0.33 kg/kg, respectively). Significant negative correlations were found between 5-m sprint time and relative squat strength (r = -0.613, power = 0.96, p = 0.004) and between relative squat strength and 10- and 20-m sprint times in the recreationally trained group (r = -0.621, power = 0.51, p = 0.003; r = -0.604, power = 0.53, p = 0.005, respectively). These results, indicating that relative strength, are important for initial sprint acceleration in all athletes but more strongly related to sprint performance over greater distances in recreationally trained individuals.  相似文献   

11.
We tested the hypothesis that O(2) uptake (Vo(2)) kinetics at the onset of heavy exercise would be altered in a state of muscle fatigue and prior metabolic acidosis. Eight well-trained cyclists completed two identical bouts of 6-min cycling exercise at >85% of peak Vo(2) separated by three successive bouts of 30 s of sprint cycling. Not only was baseline Vo(2) elevated after prior sprint exercises but also the time constant of phase II Vo(2) kinetics was faster (28.9 +/- 2.4 vs. 22.2 +/- 1.7 s; P < 0.05). CO(2) output (Vco(2)) was significantly reduced throughout the second exercise bout. Subsequently Vo(2) was greater at 3 min and increased less after this after prior sprint exercise. Cardiac output, estimated by impedance cardiography, was significantly higher in the first 2 min of the second heavy exercise bout. Normalized integrated surface electromyography of four leg muscles and normalized mean power frequency were not different between exercise bouts. Vo(2) and Vco(2) kinetic responses to heavy exercise were markedly altered by prior multiple sprint exercises.  相似文献   

12.
This study aimed to examine the relationship existing between maximum strength values in 2 common resistance training row exercises (bilateral bench pull [BBP] and one-arm cable row [OACR]) and short sprint performance in elite kayakers. Ten junior kayakers (5 women and 5 men) were tested on different days for 1 repetition maximum (1RM) and maximal voluntary isometric contraction in both exercises. Moreover, a 12-m sprint kayak was performed in a dew pond to record split times (2, 5, and 10 m), peak velocity, distance completed considering the first 8 strokes, and mean acceleration induced by right blade and left blade strokes. No differences (p > 0.05) were observed when right and left arms were compared in sprint testing or strength testing variables. Maximal strength values in BBP and OACR were significantly correlated with short sprint performance variables, showing the bilateral exercise with slightly stronger correlation coefficients than the unilateral seated row. Moreover, the relationship between strength testing and sprint testing variables is stronger when maximal force is measured through a dynamic approach (1RM) in comparison with an isometric approach. In conclusion, maximal strength in BBP and OACR is a good predictor of the start phase performance in elite sprint kayakers, mainly the 1RM value in BBP.  相似文献   

13.
In order to investigate the effects of a resistance training modality on cycling performance, 23 trained club-level cyclists were placed into high resistance/low repetition (H-Res), low resistance/high repetition (H-Rep), or cycling-only groups for a 10-week program. All 3 groups followed the same cycling plan, but the H-Res and H-Rep groups added resistance training. Testing pre and post consisted of a graded incremental lactate profile test on an ergometer, with blood lactate being sampled. VO2 values were measured to determine economy. Maximum strength testing of 4 strength exercises targeting the lower extremity musculature was conducted with the H-Res and H-Rep groups. There were significant gains in all 4 resistance training exercises (p < 0.05) for both H-Res and H-Rep, with the H-Res group having significantly greater gains than the H-Rep group had in the leg press exercise (p < 0.05). There were, however, no significant group x training differences (p > 0.05) found between the 3 training groups on the cycling test in lactate values or economy. It appears that for this population of cyclists, neither H-Res nor H-Rep resistance training provided any additional performance benefit in a graded incremental cycling test when compared with cycling alone over a training time of this length. It is possible that with this population, various factors such as acute fatigue, strength, and aerobic gains from the cycling training, in addition to well-developed bases of strength and conditioning from previous training, reduced differences between groups in both strength gains and cycling performance.  相似文献   

14.
In several recent studies, athletes experienced substantial gains in sprint and endurance performance when explosive training or high-intensity interval training was added in the noncompetitive phase of a season. Here we report the effect of combining these 2 types of training on performance in the competitive phase. We randomized 18 road cyclists to an experimental (n = 9) or control (n = 9) group for 4-5 weeks of training. The experimental group replaced part of their usual training with twelve 30-minute sessions consisting of 3 sets of explosive single-leg jumps (20 for each leg) alternating with 3 sets of high-resistance cycling sprints (5 x 30 seconds at 60-70 min(-1) with 30-second recoveries between repetitions). Performance measures, obtained over 2-3 days on a cycle ergometer before and after the intervention, were mean power in a 1- and 4-km time trial, peak power in an incremental test, and lactate-profile power and oxygen cost determined from 2 fixed submaximal workloads. The control group showed little mean change in performance. Power output sampled in the training sprints of the experimental group indicated a plateau in the training effect after 8-12 sessions. Relative to the control group, the mean changes (+/-90% confidence limits) in the experimental group were: 1-km power, 8.7% (+/-2.5%); 4-km power, 8.1% (+/-4.1%); peak power, 6.8% (+/-3.6); lactate-profile power, 3.7% (+/-4.8%); and oxygen cost, -3.0% (+/-2.6%). Individual responses to the training were apparent only for 4-km and lactate-profile power (standard deviations of 2.5% and 2.8%, respectively). The addition of explosive training and high-resistance interval training to the programs of already well-trained cyclists produces major gains in sprint and endurance performance, partly through improvements in exercise efficiency and anaerobic threshold.  相似文献   

15.
From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task.  相似文献   

16.
Training at a load maximizing power output (Pmax) is an intuitively appealing strategy for enhancement of performance that has received little research attention. In this study we identified each subject's Pmax for an isoinertial resistance training exercise used for testing and training, and then we related the changes in strength to changes in sprint performance. The subjects were 18 well-trained rugby league players randomized to two equal-volume training groups for a 7-week period of squat jump training with heavy loads (80% 1RM) or with individually determined Pmax loads (20.0-43.5% 1RM). Performance measures were 1RM strength, maximal power at 55% of pretraining 1RM, and sprint times for 10 and 30 m. Percent changes were standardized to make magnitude-based inferences. Relationships between changes in these variables were expressed as correlations. Sprint times for 10 m showed improvements in the 80% 1RM group (-2.9 +/- 3.2%) and Pmax group (-1.3 +/- 2.2%), and there were similar improvements in 30-m sprint time (-1.9 +/- 2.8 and -1.2 +/- 2.0%, respectively). Differences in the improvements in sprint time between groups were unclear, but improvement in 1RM strength in the 80% 1RM group (15 +/- 9%) was possibly substantially greater than in the Pmax group (11 +/- 8%). Small-moderate negative correlations between change in 1RM and change in sprint time (r approximately -0.30) in the combined groups provided the only evidence of adaptive associations between strength and power outputs, and sprint performance. In conclusion, it seems that training at the load that maximizes individual peak power output for this exercise with a sample of professional team sport athletes was no more effective for improving sprint ability than training at heavy loads, and the changes in power output were not usefully related to changes in sprint ability.  相似文献   

17.
Maximal mechanical power output and capacity of cyclists and young adults   总被引:2,自引:0,他引:2  
The maximal average power output (Wmax) has been examined in 10 male students, 22 pursuit and 12 sprint cyclists. In 24 of these subjects (8 students, 10 pursuit and 6 sprint cyclists), estimates of the maximal capacity (Wcap) of the short-term anaerobic energy yielding processes were made. The results show that the sprinters had a higher absolute Wmax (1241 +/- 266 W) and Wcap (16.7 +/- 4.9 kJ) than either the students (1019 +/- 183 W, 14.7 +/- 2.8 kJ) or the pursuit cyclists (962 +/- 206 W, 14.0 +/- 2.9 kJ). However, the differences were removed when the values were standardised for muscle size. In the sprinters the Wmax was attained at an optimal pedal frequency Vopt of 132 +/- 3 min-1 and the estimated maximal velocity of pedalling (V0) was 262 +/- 8 min-1. The comparable figures in the students and pursuit cyclists were 118 +/- 8 min-1, 235 +/- 17 min-1 and 122 +/- 6 min-1, 242 +/- 12 min-1 respectively. The coefficient of variation of duplicate measurements of Wcap was found to be +/- 9%. Using data of Wilkie (1968) for muscle phosphagen and glycolytic stores (27 mmol.kg-1), it was estimated that the probable efficiency of the anaerobic processes during maximal cycling was 0.22. It was concluded that Wmax and Wcap are largely determined by body size and muscularity. The efficiency of anaerobiosis appears to be of the same order of magnitude as found for oxidative work.  相似文献   

18.
The purpose of this investigation was to determine the effects of 2.5 hours of cycling with and without carbohydrate supplementation on gross efficiency (GE). Trained cyclists (N = 15) were tested for V(.-)O2max (53.6 + 2.2 ml x kg(-1) x min(-1)) and lactate threshold during incremental tests to exhaustion. On 2 separate visits, cyclists performed 2.5 hours of cycling on an indoor trainer. A carbohydrate (C) or placebo (P) beverage was randomly provided and counterbalanced for each of the trials. Gross efficiency, cycling economy, power output, V(.-)O2, lactate, and blood glucose were measured every 20 minutes during the 2.5-hour ride. Muscle glycogen was measured immediately before and after the ride from the vastus lateralis. Results indicated that power output and V(.-)O2 decreased over time (p < 0.05) but were not different between trials. Relative GE and cycling economy during C were greater than P at 40 and 150 minutes (p < 0.05). Blood glucose significantly decreased in P and was lower than C at all time points (p < 0.05). Respiratory exchange ratio decreased over time in both trials, with a significant treatment effect at 40 and 150 minutes (p < 0.05). Muscle glycogen decreased by 65% during both conditions (p < 0.05) but demonstrated no treatment effect. We conclude that carbohydrate supplementation during 2.5 hours of cycling attenuated the decrease in GE possibly by maintaining blood glucose levels. This suggests that the positive effect of carbohydrate supplementation on endurance performance may be through the maintenance of metabolic efficiency.  相似文献   

19.
The effects of strength training on freely chosen cadence and physiological responses in cyclists and recreationally active individuals were investigated. Well-trained cyclists were assigned to either usual endurance training combined with strength training (C-ES; n = 11) or usual endurance training only (C-E; n = 9). Recreationally active individuals (R-S; n = 7) performed the same strength training as C-ES did (4 lower body exercises, 3 × 4-10 repetition maximum [RM], twice a week for 12 weeks). The R-S and C-ES increased 1RM to a similar extent after 4 and 12 weeks (p < 0.01), whereas 1RM remained unchanged in C-E. Only R-S increased patellar tendon cross-sectional area (CSA; 7 ± 1%, p < 0.001). After 4 weeks, R-S reduced freely chosen cadence, oxygen consumption, heart rate, rating of perceived exertion, and blood lactate concentration during cycling at 125 W. These responses remained reduced throughout the intervention period (p < 0.05). No significant changes were observed in these physiological variables in C-ES and C-E. In conclusion, freely chosen cadence during submaximal cycling was reduced in recreationally active individuals after a period of strength training but was not reduced in well-trained cyclists. The reduced freely chosen cadence may be associated with the observed increase in patellar tendon CSA through a morphological-sensory-motor interaction. A practical application is that heavy strength training can reduce freely chosen cadence during submaximal cycling and thereby improve cycling economy in recreationally active individuals, whereas other mechanisms should account for improved performance after strength training in well-trained cyclists.  相似文献   

20.
The objective of this study was to examine the effect of sodium bicarbonate (NaHCO3-) ingestion on performance and perceptual responses in a laboratory-simulated bicycle motocross (BMX) qualification series. Nine elite BMX riders volunteered to participate in this study. After familiarization, subjects undertook two trials involving repeated sprints (3 x Wingate tests [WTs] separated by 30 minutes of recovery; WT1, WT2, WT3). Ninety minutes before each trial, subjects ingested either NaHCO3- or placebo in a counterbalanced, randomly assigned, double-blind manner. Each trial was separated by 4 days. Performance variables of peak power, mean power, time to peak power, and fatigue index were calculated for each sprint. Ratings of perceived exertion were obtained after each sprint, and ratings of perceived readiness were obtained before each sprint. No significant differences were observed in performance variables between successive sprints or between trials. For the NaHCO3- trial, peak blood lactate during recovery was greater after WT2 (p < 0.05) and tended to be greater after WT3 (p = 0.07), and ratings of perceived exertion were not influenced. However, improved ratings of perceived readiness were observed before WT2 and WT3 (p < 0.05). In conclusion, NaHCO3- ingestion had no effect on performance and RPE during a series of three WT simulating a BMX qualification series, possibly because of the short duration of each effort and the long recovery time used between the three WTs. On the contrary, NaHCO3- ingestion improved perceived readiness before each WT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号