首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigated the role of serotonin (5HT) and dopamine (DA) in the regulation of olfactory system function and odor-evoked tentacle movements in the snail Helix. Preparations of the posterior tentacle (including sensory pad, tentacular ganglion and olfactory nerve) or central ganglia with attached posterior tentacles were exposed to cineole odorant and the evoked responses were affected by prior application of 5HT or DA or their precursors 5-hydroxytryptophan (5HTP) and l-DOPA, respectively. 5HT applications decreased cineole-evoked responses recorded in the olfactory nerve and hyperpolarized the identified tentacle retractor muscle motoneuron MtC3, while DA applications led to the opposite changes. 5HTP and l-DOPA modified MtC3 activity comparable to 5HT and DA action. DA was also found to decrease the amplitude of spontaneous local field potential oscillations in the procerebrum, a central olfactory structure. In vivo studies demonstrated that injection of 5HTP in freely moving snails reduced the tentacle withdrawal response to aversive ethyl acetate odorant, whereas the injection of l-DOPA increased responses to “neutral” cineole and aversive ethyl acetate odorants. Our data suggest that 5HT and DA affect the peripheral (sensory epithelium and tentacular ganglion), the central (procerebrum), and the single motor neuron (withdrawal motoneuron MtC3) level of the snail’s nervous system.  相似文献   

2.
Procerebrum is the central part of the olfactory system in terrestrial snails. Spontaneous rhythmic oscillations were described in this structure. The role of these oscillations in the mechanisms of odor perception and discrimination is unknown yet. Electrical activity of the Helix procerebrum was recorded in vivo. Changes in spontaneous rhythmic oscillations in response to olfactory stimulation were observed. Within the first 10 s after odor application (cineole) in low concentration, a statistically significant decrease in the frequency and increase in the amplitude of procerebrum oscillations were revealed in freely behaving animals. Timing of those changes corresponded to the time of defensive reaction realization of the tentacle withdrawal. The increase in the amplitude and a tendency to a decrease in the frequency of oscillations in response to odor application in high concentration were observed in time period 11-20 s, which corresponded to an increased duration of tentacle withdrawal. The results suggest an implicit relation of the amplitude and frequency of oscillations in odor perception and discrimination.  相似文献   

3.
This study examined certain structural and functional aspects of the olfactory system in regenerated posterior tentacles of the terrestrial snail Achatina fulica. Regeneration of the epithelial sensory pad occurs with accurate size regulation. All five neuronal cell types which are normally revealed by horseradish peroxidase backfilling are also regenerated. The sensory cells attain normal numbers at about 20 weeks postlesion. The organization of neuronal elements within the tentacle is chaotic, however, at early stages of regeneration. Even later, the digitlike extensions of the ganglion, which are characteristic of intact tentacles, fail to appear. The recovery of odor sensitivity was evaluated using a tentacular olfactormeter and a behavioral assay that involved locomotor orientation towards the odor stimulus. Thresholds and concentration-dependent response rates were equivalent for regenerated and intact tentacles, tested in the same animals, at 10 weeks post-lesion.  相似文献   

4.
Three flexor muscles of the posterior tentacles of the snail Helix pomatia have recently been described. Here, we identify their local motor neurons by following the retrograde transport of neurobiotin injected into these muscles. The mostly unipolar motor neurons (15–35 µm) are confined to the tentacle digits and send motor axons to the M2 and M3 muscles. Electron microscopy revealed small dark neurons (5–7 µm diameter) and light neurons with 12–18 (T1 type) and 18–30 µm diameters (T2 type) in the digits. The diameters of the neurobiotin-labeled neurons corresponded to the T1 type light neurons. The neuronal processes of T1 type motor neurons arborize extensively in the neuropil area of the digits and receive synaptic inputs from local neuronal elements involved in peripheral olfactory information processing. These findings support the existence of a peripheral stimulus–response pathway, consisting of olfactory stimulus—local motor neuron—motor response components, to generate local lateral movements of the tentacle tip (“quiver”). In addition, physiological results showed that each flexor muscle receives distinct central motor commands via different peritentacular nerves and common central motor commands via tentacle digits, respectively. The distal axonal segments of the common pathway can receive inputs from local interneurons in the digits modulating the motor axon activity peripherally without soma excitation. These elements constitute a local microcircuit consisting of olfactory stimulus—distal segments of central motor axons—motor response components, to induce patterned contraction movements of the tentacle. The two local microcircuits described above provide a comprehensive neuroanatomical basis of tentacle movements without the involvement of the CNS.  相似文献   

5.
The digit‐like extensions (the digits) of the tentacular ganglion of the terrestrial slug Limax marginatus are the cell body rich region in the primary olfactory system, and they contain primary olfactory neurons and projection neurons that send their axons to the olfactory center via the tentacular nerves. Two cell clusters (the cell masses) at the bases of the digits form the other cell body rich regions. Although the spontaneous slow oscillations and odor responses in the tentacular nerve have been studied, the origin of the oscillatory activity is unknown. In the present study, we examined the contribution of the neurons in the digits and cell masses to generation of the tentacular nerve oscillations by surgical removal from the whole tentacle preparations. Both structures contributed to the tentacular oscillations, and surgical isolation of the digits from the whole tentacle preparations still showed spontaneous oscillations. To analyze the dynamics of odor‐processing circuits in the digits and tentacular ganglia, we studied the effects of γ‐aminobutyric acid, glutamate, and acetylcholine on the circuit dynamics of the oscillatory network(s) in the peripheral olfactory system. Bath or local puff application of γ‐aminobutyric acid to the cell masses decreased the tentacular nerve oscillations, whereas the bath or local puff application of glutamate and acetylcholine to the digits increased the digits' oscillations. Our results suggest the existence of two intrinsic oscillatory circuits that respond differentially to endogenous neurotransmitters in the primary olfactory system of slugs. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 304–318, 2004  相似文献   

6.
The digit-like extensions (the digits) of the tentacular ganglion of the terrestrial slug Limax marginatus are the cell body rich region in the primary olfactory system, and they contain primary olfactory neurons and projection neurons that send their axons to the olfactory center via the tentacular nerves. Two cell clusters (the cell masses) at the bases of the digits form the other cell body rich regions. Although the spontaneous slow oscillations and odor responses in the tentacular nerve have been studied, the origin of the oscillatory activity is unknown. In the present study, we examined the contribution of the neurons in the digits and cell masses to generation of the tentacular nerve oscillations by surgical removal from the whole tentacle preparations. Both structures contributed to the tentacular oscillations, and surgical isolation of the digits from the whole tentacle preparations still showed spontaneous oscillations. To analyze the dynamics of odor-processing circuits in the digits and tentacular ganglia, we studied the effects of gamma-aminobutyric acid, glutamate, and acetylcholine on the circuit dynamics of the oscillatory network(s) in the peripheral olfactory system. Bath or local puff application of gamma-aminobutyric acid to the cell masses decreased the tentacular nerve oscillations, whereas the bath or local puff application of glutamate and acetylcholine to the digits increased the digits' oscillations. Our results suggest the existence of two intrinsic oscillatory circuits that respond differentially to endogenous neurotransmitters in the primary olfactory system of slugs.  相似文献   

7.
Although the neural control of behavior has been extensively studied in gastropods, basic gaps remain in our understanding of how sensory stimuli are processed. In particular, there is only patchy evidence regarding the functional roles of sense organs and the extensive peripheral nervous system they contain. Our goal was to use extracellular electrophysiological recordings to confirm the chemosensory role of the tentacles in the great pond snail, Lymnaea stagnalis. Employing a special twin-channel suction electrode to improve signal-to-noise ratio, we applied three food odors (derived from earthworm-based food pellets, algae-based pellets, and fresh lettuce) to a reduced preparation of the tentacle while recording neuronal activity in the tentacle nerve. Responses were assessed by comparing average spike frequencies produced in response to saline flow with and without odors. We report stronger neuronal responses to earthworm-based food odors and weaker responses to algae-based food odors. There were no clear neuronal responses produced when lettuce food odor or control saline was applied to the tentacle. Overall, our results provide strong evidence for the chemosensory role of the tentacles in navigation behavior by L. stagnalis. Although it is unclear whether the differences in neuronal responses to different odors are a technical consequence of our recording system or a genuine feature of the snail sensory system, these results are a useful foundation for further study of peripheral nervous system function in gastropods.  相似文献   

8.
Summary The epidermis of the posterior tentacles of the terrestrial snail Achatina fulica was examined by histological and histochemial methods. There are seven types of unicellular glands in the tentacle skin: three mucocytes containing either acid mucopolysaccharides or neutral mucopolysaccharides, or both; two mucocytes containing glycoproteins; a lipid gland; and a protein gland. The mucocytes are considerably more abundant along the shaft of the tentacle than at the tip, where the olfactory organ is situated. Conversely, the lipid glands and the protein glands are found almost exclusively in the olfactory organ. With minor exceptions, none of the foregoing cell types is present in the skin of the head or the foot. These observations indicate a high degree of local specificity in secretory products, consistent with a ubiquitous and generous endowment of glands in the molluscan skin. Collar cells, described by previous authors in closely related species, were not observed.  相似文献   

9.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second-order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor-evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle-averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity.  相似文献   

10.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second‐order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor‐evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle‐averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 369–378, 2004  相似文献   

11.
Having been investigated for over 40 years, some aspects of the biology of terrestrial gastropod’s olfactory system have been challenging and highly contentious, while others still remain unresolved. For example, a number of terrestrial gastropod species can track the odor of food, while others have no strong preferences toward food odor; rather they find it by random encounter. Here, while assessing the most recent findings and comparing them with earlier studies, the aspects of the food selection based on olfactory cues are examined critically to highlight the speculations and controversies that have arisen. We analyzed and compared the potential role of airborne odors in the feeding behavior of several terrestrial gastropod species. The available results indicate that in the foraging of most of the terrestrial gastropod species odor cues contribute substantially to food finding and selection. The results also suggest, however, that what they will actually consume largely depends on where they live and the species of gastropod that they are. Due to the voluminous literature relevant to this object, this review is not intended to be exhaustive. Instead, I selected what I consider to be the most important or critical in studies regarding the role of the olfaction in feeding of terrestrial gastropods.  相似文献   

12.
The aim of this study was to determine if the display of lordosis behavior in the male rat could be influenced by the olfactory environment. Unexperienced adult male rats were orchidectomized (ORCH). They were primed with 75 μg estradiol benzoate and 1 mg progesterone was injected at an interval of 39 hr following long-term (LT = 3 weeks) or short-term (SHT = 8 hr 30 min) exposure to the odor of male or female urine. For 10 min they were placed in the presence of a “stimulus” male of proven sexual vigor 9 hr 30 min ± 1 hr after progesterone injection. Both LT and SHT exposure to the odor of male urine caused a significant increase in the number of ORCH rats which showed lordosis response to male mounts compared to either the ORCH rats exposed to the odor of female urine or to the controls. Following complete olfactory bulb removal (COBR), no difference was observed in the occurrence of lordosis behavior between the ORCH rats whether or not exposed to the odor of urine. For the ORCH-COBR rats exposed to male urine the proportion of animals responding to mounts did not differ from that of their nonbulbectomized counterparts. In comparing the effects of COBR vs anterior olfactory bulb removal (AOBR) lordosis behavior occurred more frequently in COBR than in AOBR-ORCH rats. The lordosis quotient (LQ) was not affected by exposure to the odor of male urine in the nonbulbectomized ORCH rats. In contrast, it appeared to be higher in both COBR and AOBR animals than in their nonbulbectomized counterparts. The olfactory bulbs were then concluded to inhibit the display of lordosis behavior in the male rat. It was also thought that the olfactory stimuli originating from male urine were capable of releasing the hypothalamic structures involved in the control of lordosis behavior of the male rat from an olfactory inhibitory influence.  相似文献   

13.
Hexapods most likely derived from an aquatic ancestor, which they shared with crustaceans. During the transition from water to land, their sensory systems had to face the new physiological demands that terrestrial conditions impose. This process also concerns the sense of smell and, more specifically, detection of volatile, air-borne chemicals. In insects, olfaction plays an important role in orientation, mating choice, and food and host finding behavior. The first integration center of odor information in the insect brain is the antennal lobe, which is targeted by the afferents from olfactory sensory neurons on the antennae. Within the antennal lobe of most pterygote insects, spherical substructures called olfactory glomeruli are present. In order to gain insights into the evolution of the structure of the central olfactory pathway in insects, we analyzed a representative of the wingless Archaeognatha or jumping bristletails, using immunocytochemistry, antennal backfills and histological section series combined with 3D reconstruction. In the deutocerebrum of Lepismachilis y-signata, we found three different neuropil regions. Two of them show a glomerular organization, but these glomeruli differ in their shape from those in all other insect groups. The connection of the glomerular neuropils to higher brain centers remains unclear and mushroom bodies are absent as reported from other archaeognathan species. We discuss the evolutionary implications of these findings.  相似文献   

14.
In Helix aspersa the posterior tentacles house a sensitive olfactory organ. We studied two types of tentacular movements, twitch and quiver. A twitch is a brief retraction (mean duration, 4.1 s); a quiver is a rapid lateral movement (350 ms) unaccompanied by retraction. We videotaped the tentacles while snails explored an open field. When an attractive odor source, linalool, was present at one side of the arena, the snails consistently moved towards it. By contrast, if only the carrier substance was present the snails moved in random directions. Twitching was 50 times more frequent during linalool trials than during control trials, while quivering was 1.4 times more frequent. Twitching increased steadily and dramatically as snails approached the linalool source and, in the temporal dimension, the maximum rate of twitching occurred when the snails arrived at the odor source. Quivers occurred at a fairly constant rate. Twitching is interpreted as a mechanism to remove odor molecules trapped in the liquid covering of the olfactory epithelium, thus resulting in better temporal resolution for olfactory perception. Quivering may be a mechanism to increase access of odor molecules to receptors by decreasing the boundary layer at the surface of the tentacle. Accepted: 24 May 1997  相似文献   

15.
The gaseous neurotransmitters nitric oxide (NO) and carbon monoxide(CO) are prominent and universal components of the array ofneurotransmitters found in olfactory information processingsystems. These highly mobile communication compounds have effectson both second messenger signaling and directly on ion channelgating in olfactory receptors and central synaptic processingof receptor input. Olfactory systems are notable for the plasticityof their synaptic connections, revealed both in higher-orderassociative learning mechanisms using odor cues and developmentalplasticity operating to maintain function during addition ofnew olfactory receptors and new central olfactory interneurons.We use the macrosmatic terrestrial mollusk Limax maximus toinvestigate the role of NO and CO in the dynamics of centralodor processing and odor learning. The major central site ofodor processing in the Limax CNS is the procerebral (PC) lobeof the cerebral ganglion, which displays oscillatory dynamicsof its local field potential and periodic activity waves modulatedby odor input. The bursting neurons in the PC lobe are dependenton local NO synthesis for maintenance of bursting activity andwave propagation. New data show that these bursting PC interneuronsare also stimulated by carbon monoxide. The synthesizing enzymefor carbon monoxide, heme oxygenase 2, is present in the neuropilof the PC lobe. Since the PC lobe exhibits two forms of synapticplasticity related to both associative odor learning and continualconnection of new receptors and interneurons, the use of multiplegaseous neurotransmitters may be required to enable these multipleforms of synaptic plasticity.  相似文献   

16.
Myriapods represent an arthropod lineage, that originating from a marine arthropod ancestor most likely conquered land independently from hexapods and crustaceans. Establishing aerial olfaction during a transition from the ocean to land requires molecules to be detected in gas phase instead of in water solution. Considering that the olfactory sense of myriapods has evolved independently from that in hexapods and crustaceans, the question arises if and how myriapods have solved the tasks of odor detection and odor information processing in air. Comparative studies between arthropod taxa that independently have established a terrestrial life style provide a powerful means of investigating the evolution of chemosensory adaptations in this environment and to understand how the arthropod nervous system evolved in response to new environmental and ecological challenges. In general, the neuroethology of myriapods and the architecture of their central nervous systems are insufficiently understood. In a set of experiments with the centipede Scutigera coleoptrata, we analyzed the central olfactory pathway with serial semi-thin sectioning combined with 3-dimensional reconstruction, antennal backfilling with neuronal tracers, and immunofluorescence combined with confocal laser-scanning microscopy. Furthermore, we conducted behavioral experiments to find out if these animals react to airborne stimuli. Our results show that the primary olfactory and mechanosensory centers are well developed in these organisms but that the shape of the olfactory neuropils in S. coleoptrata is strikingly different when compared with those of hexapods and malacostracan crustaceans. Nevertheless, the presence of distinct neuropils for chemosensory and mechanosensory qualities in S. coleoptrata, malacostracan Crustacea, and Hexapoda could indicate a common architectural principle within the Mandibulata. Furthermore, behavioral experiments indicate that S. coleoptrata is able to perceive airborne stimuli, both from live prey and from a chemical extract of the prey. These results are in line with the morphological findings concerning the well-developed olfactory centers in the deutocerebrum of this species.  相似文献   

17.
Lessons from snail tentacles   总被引:1,自引:0,他引:1  
Chase  Ronald 《Chemical senses》1986,11(4):411-426
The olfactory system of the snail is functionally capable andstructurally complex. The morphology of the olfactory epitheliumand the glomeruli are similar to analogous structures in vertebrates.However, the snail system differs markedly from the vertebratesystem in its lack of a mucus secretion and the apparent absenceof spatial patterning. Such similarities and differences teachus about the limitations and options governing the evolutionof olfactory systems. The comparative approach leads to thefollowing conclusions, or ‘lessons’: (1) Death andreplacement is normal for olfactory receptors. (2) Olfactionrequires large numbers of receptors and other neurons. (3) Glomerularstructures in the olfactory neuropil aid sensory processing.(4) Local interactions are important in the early stages ofolfactory processing. (5) The role of mucus in olfaction ispeculiar to the vertebrate nose. (6) The spatial patterningof odor responses is not necessary for effective odor processing.  相似文献   

18.
Summary Extracellular electrical stimulation ofTrichophrya collini induces tentacle contraction. There is an inverse relationship between stimulus duration and voltage in producing a threshold response, and at a set voltage the response is graded depending upon duration of stimulus. With a threshold stimulus (6.3 V, 1,000 ms) the response is restricted to the anodal tentacles, and with increasing stimulus intensity or duration the response spreads to the cathodal and finally the intermediate tentacles. With a stimulus of 15 V, 1,000 ms the mean tentacle length is reduced to 28% of the control within 1.2 s. Recordings using intracellular microelectrodes give resting membrane potentials between –10mV and –40mV. Intracellular hyperpolarizing currents of 1nA and 2nA induce tentacle contraction to 50% and 25% of the control length respectively, but depolarizing currents do not induce contraction. SEM studies show that in the initial stages of contraction, only the central region of the tentacle shaft becomes shortened, but on full contraction shortening involves the whole of the shaft. TEM studies show that on contraction no depolymerization of tentacle axoneme microtubules occurs, but that the entire axoneme passes down into the body cytoplasm. These observations are discussed in relation to the possible mechanisms of tentacle contraction.Abbreviations Ax axoneme - C cortex - EDB elongate dense body - SEM scanning electron microscopy - TEM transmission electron microscopy  相似文献   

19.
Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.  相似文献   

20.
The tentacle withdrawal reflex of the terrestrial snail Helix aspersa was studied in vitro. The reflex is evoked by mechanical stimulation of the nose. Lesion experiments showed that 45% to 75% of the response amplitude is attributable to peripheral pathways alone. The central contribution increases with increasing stimulus intensity.Repeated stimulation produced pure habituation at low stimulus strengths, and habituation mixed with intrinsic sensitization (warm-up effect) at high stimulus strengths. The simultaneous occurrence of habituation and sensitization is consistent with the dual process theory of plasticity. Additional results differentiate the two processes. Habituation can occur without the CNS, whereas intrinsic sensitization requires the CNS. Also, the two processes are differentially effective in their influences on response amplitude and duration: habituation is more effective in determining response amplitude, while sensitization is more effective in determining response duration.Although the establishment of sensitization requires the CNS, 81% of the memory for intrinsic sensitization was localized to the periphery, by lesion experiments. Extrinsic sensitization, caused by stimulation of the medial lip nerve, had similar behavioural effects and a similar memory locus. Both types of sensitization appear to be caused by neuromuscular facilitation mediated by a central pathway.Abbreviations CNS central nervous system - PNS peripheral nervous system - S-R stimulus-response - TRM tentacle retractor muscle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号