首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fusarium roseum culmorum, grown on apple cutin as the sole source of carbon, was shown to produce a cutin depolymerizing enzyme. From the extracellular fluid of these F. roseum cultures, a cutinase and a nonspecific esterase were isolated utilizing Sephadex G-100, QAE-Sephadex, and SP-Sephadex chromatography. The homogeneity of the cutinase was verified by polyacrylamide disc gel electrophoresis. The molecular weight of the cutinase was estimated to be 24,300 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Electrophoretic mobility of this enzyme was between that of Cutinases I and II from Fusarium solani pisi. The F. roseum cutinase hydrolyzed p-nitrophenyl butyrate and cutin, but not p-nitrophenyl palmitate, while the nonspecific esterase hydrolyzed the long-chain esters. Amino acid composition of F. roseum cutinase was found to be similar to that of F. solani pisi Cutinase I except for differences in the number of serine, valine, and cysteine residues. The time-course, protein concentration dependence, substrate concentration dependence, and pH optimum (10.0 for cutin hydrolysis) of the F. roseum cutinase was similar to the cutinases from F. solani pisi. The F. roseum cutinase was inhibited by diisopropylfluorophosphate and paraoxon, and the [3H]diisopropylphosphate group was covalently attached to the enzyme upon treatment with tritiated diisopropylfluorophosphate. Therefore, it is concluded that catalysis by cutinase involves an “active serine.” Immunochemical studies with a rabbit antibody prepared against F. solani pisi Cutinase I demonstrated that Cutinase II from this organism was immunologically very similar to, but not identical to, Cutinase I. On the other hand, the cutinase from F. roseum was immunologically quite different from the cutinases isolated from F. solani pisi in that it did not cross-react with anticutinase I. However, all three cutinases were virtually identical in their sensitivity to inhibition by anticutinase I, and all three enzymes were virtually completely inhibited by the anticutinase I.  相似文献   

2.
Esterase D1 and esterase D2, two common esterase D (EC 3.1.1.1) isozymes, were isolated and purified from human erythrocytes. Their substrate specificity, pH profile and Km values were essentially identical. Their molecular mass was the same at 34 kDa on sodium dodecyl sulfate/polyacrylamide electrophoresis and at 27 kDa on Sephadex G-100 gel filtration. Antisera to each of the esterase D1 and esterase D2 isozymes were successfully raised in chickens; each antiserum reacted identically with both isozymes. These findings indicate that the isozymes are close to each other in structure. The fact that the molecular mass of the esterase D1 and esterase D2 isozymes computed on sodium dodecyl sulfate/polyacrylamide electrophoresis was close to that obtained on Sephadex G-100 gel filtration in non-dissociating buffer indicates that the isozymes are not dimers bound by disulfide bonds or a noncovalent force. These facts together indicate that the esterase D isozymes are monomers, contrary to the prevailing view that they are dimers.  相似文献   

3.
R E Purdy  P E Kolattukudy 《Biochemistry》1975,14(13):2832-2840
The properties of the homogeneous cutinase I, cutinase II, and the nonspecific esterase isolated from the extracellular fluid of cutin-grown Fusarium solani F. pisi (R.E. Purdy and P.E. Kolattukudy (1975), Biochemistry, preceding paper in this issue) were investigated. Using tritiated apple cutin as substrate, the two cutinases showed similar substrate concentration dependence, protein concentration dependence, time course profiles, and pH dependence profiles with optimum near 10.0. Using unlabeled cutin, the rate of dihydroxyhexadecanoic acid release from apple fruit cutin by cutinase I was determined to be 4.4 mumol per min per mg. The cutinases hydrolyzed methyl hexadecanoate, cyclohexyl hexadecanoate, and to a much lesser extent hexadecyl hexadecanoate but not 9-hexadecanoyloxyheptadecane, cholesteryl hexadecanoate, or hexadecyl cinnamate. The extent of hydrolysis of these model substrates by cutinase I was at least three times that by cutinase II. The nonspecific esterase hydrolyzed all of the above esters except hexadecyl cinnamate, and did so to a much greater extent than did the cutinases. None of the enzymes hydrolyzed alpha- or beta-glucosides of p-nitrophenol. p-Nitrophenyl esters of fatty acids from C2 through C18 were used as substrates and V's and Kms were determined...  相似文献   

4.
Esterase-6 (EST 6; carboxylic-ester hydrolase; EC 3.1.1.1) from Drosophila melanogaster was purified to homogenity. Purified enzyme occurs as two closely moving isozymes, slow (EST 6S) and fast (EST 6F), on native polyacrylamide gel electrophoresis. Except for slight differences in their mobility, the two isozymes share similar molecular and catalytic properties. Both isozymes are glycoproteins and have an apparent molecular weight of 62,000 to 65,000 as judged by analytical gel filtration and sodium dodecyl sulfate (SDS) electrophoresis. They have identical mobility on SDS-polyacrylamide gels and an isoelectric point of 4.5. Each isozyme has a single active catalytic site as confirmed by titration with 0,0-diethyl-p-nitrophenyl phosphate (Paraoxon). We conclude that EST 6 is a monomeric enzyme. The amino acid composition of the two isozymes is very similar and both variants lack half-cystine residues. The low pI of the enzyme is due in part to a relatively high proportion of glutamic and aspartic amino acid residues. Characterization of the kinetic parameters of the isozymes using beta-naphthyl and p-nitrophenyl esters revealed no statistically significant differences in catalytic efficiency. There is, however, a suggestion that the two isozymes may differ in their substrate specificity.  相似文献   

5.
An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme.  相似文献   

6.
Cutinase, an extracellular enzyme, was induced by cutin in a fluorescent Pseudomonas putida strain that was found to be cohabiting with an apparently nitrogen-fixing Corynebacterium. This enzyme was purified from the culture fluid by acetone precipitation followed by chromatography on DEAE-cellulose, QAE-Sephadex, Sepharose 6B, and Sephadex G-100. The purified enzyme showed a single band when subjected to polyacrylamide electrophoresis and the enzymatic activity coincided with the protein band. Sodium dodecyl sulfate-polyacrylamide electrophoresis showed a single band at a molecular weight of 30,000 and gel filtration of the native enzyme through a calibrated Sephadex G-100 column indicated a molecular weight of 30,000, showing that the enzyme is a monomer. The amino acid composition of bacterial cutinase is distinctly different from that of fungal or plant cutinases. This bacterial cutinase showed a broad pH optimum between 8.5 and 10.5 with 3H-labeled apple cutin as the substrate. Linear rates of cutin hydrolysis were measured up to 20 min of incubation time and 4 mg/ml of cutin gave the maximum hydrolysis rate. This cutinase catalyzed hydrolysis of p-nitrophenyl esters of C4 to C16 fatty acids with decreasing V and increasing Km for the longer chain esters. It did not hydrolyze tripalmitoyl glycerol or trioleyl glycerol, indicating that this is not a general lipase. Active serine-directed reagents such as organophosphates and organoboronic acids severely inhibited the enzyme, suggesting that bacterial cutinase is an "active serine" enzyme. Neither thiol-directed reagents nor metal ion chelators had any effect on this enzyme. Antibody raised against purified enzyme gave a single precipitin line on Ouchterlony double diffusion analysis. Western blot analysis of the extracellular fluid of induced Ps. putida showed a single band at 30 kDa. No immunological cross-reactivity was detected between the present bacterial enzyme and the fungal enzyme from Fusarium solani pisi when rabbit antibodies against either enzyme was used.  相似文献   

7.
Native polyacrylamide gels of extracellular proteins produced by several Streptomyces isolates grown with suberin were assayed in situ for esterase activity. Two pathogenic isolates of Streptomyces scabies from different geographical regions were found to produce a similar esterase activity that was not produced by nonpathogenic strains. After treatment with EDTA, suberin no longer induced esterase production. Expression was restored when EDTA-treated suberin was supplemented with zinc. The optimal concentration of zinc required for esterase production was 2 microM. This esterase was purified from one of the pathogenic isolates and characterized. The enzyme was 38,000 daltons when determined by gel filtration on Sephadex G-100 and 36,000 daltons when determined by denaturing polyacrylamide gel electrophoresis. The esterase showed maximal activity in sodium phosphate buffer above pH 8.0, was stable to temperatures of up to 60 degrees C, and had an apparent Km of 125 microM p-nitrophenyl butyrate.  相似文献   

8.
Midgut glands of abalone Haliotis discus contained two acid phosphatases [orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2] separable by phosphocellulose column chromatography. They were designated as acid phosphatases I and II in order of elution and were purified 99- and 290-fold, respectively. Purified acid phosphatase II was nearly homogeneous as judged by polyacrylamide gel electrophoresis. The substrate specificity of acid phosphatase I was narrow, whereas that of acid phosphatase II was broad. Good substrates for acid phosphatase I included p-nitrophenyl phosphate, phosphoenolpyruvate, inorganic pyrophosphate, and nucleoside di- and triphosphates. The acid phosphatases did not require any metal ion for maximum activity and were inhibited by Zn2+, Cu2+ and Hg2+. Fluoride and arsenate were potent inhibitors of both enzymes. The pH optima of acid phosphatases I and II were 5.9 and 5.5, respectively. The molecular weights of acid phosphatases I and II were estimated to be 28,000 and 100,000, respectively, by gel filtration on Sephadex G-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that acid phosphatase II consists of two identical subunits.  相似文献   

9.
Human red cell acid phosphatase isozymes encoded by three alleles (ACP1*A, ACPI*B and ACP1*C), each of which generates two isozymes, (f) and (s), were purified to homogeneity. The molecular mass of the six isozymes (Af, As, Bf, Bs, Cf and Cs) was estimated to be 17-18 kDa, the mass of the f isozymes probably being slightly higher than that of the s isozymes. It was indicated that the isozymes react with p-nitrophenyl phosphate in the mono anionic state, and that a group with a pKa value of about 6, which may be histidine, is of importance for the catalytic function of the s isozymes. Significant differences between the f and s isozymes were observed with respect to specific activity. Km (p-nitrophenyl phosphate), Ki (p-aminobenzylphosphonic acid), amino acid composition, stability in the presence of urea, thermal stability, retention time in size-exclusion chromatography of the native isozymes and migration in sodium dodecyl sulphate polyacrylamide gel electrophoresis, In contrast, identical or similar properties were observed for the three genetically different f isozymes, and the same was the case for the three s isozymes. It is suggested that the f and s isozymes serve different functions in the cell.  相似文献   

10.
Cutinase from pollen grains of Tropaeolum majus was purified by Sephadex G-100 gel filtration, QAE-Sephadex chromatography, and isoelectric focusing. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme was estimated to be 40,000 by both Sephadex G-100 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This cutinase was found to be a glycoprotein containing about 7% carbohydrate and the isoelectric point of this enzyme was 5.45. It catalyzed hydrolysis of p-nitrophenyl esters of C2 to C18 fatty acids with similar Km and V. The purified cutinase showed an optimum pH of 6.8 with cutin as the substrate, whereas with p-nitrophenyl esters of fatty acids the optimum pH was 8.0. This enzyme did not show any metal ion requirement. Unlike the previously studied fungal cutinases, the present pollen enzyme was strongly inhibited by thiol-directed reagents such as N-ethylmaleimide and p-hydroxymercuribenzoate whereas it was totally insensitive to the active serine-directed reagent, diisopropylfluorophosphate. The purified pollen cutinase showed preference for primary alcohol esters, but it did not catalyze hydrolysis of tripalmitoyl or trioleyl glycerol at significant rates. The properties of the pollen enzyme are, in general, in sharp contrast to those of the fungal cutinase, and the present results strongly suggest that the pollen enzyme belongs to a new class of cutinases. Another esterase which preferentially hydrolyzed p-nitrophenyl acetate was also found in the extracellular fluid. This enzyme, separated from cutinase, showed a pI of 5.6 and it was sensitive to diisopropylfluorophosphate, but not to SH-directed reagents.  相似文献   

11.
The occurrence of the two molecular forms, I and II, in the beta-glucuronidase of the liver (hepatopancreas) from the marine mollusc Littorina littorea L. has been demonstrated for the first time. The two forms have been purified 355-fold and 1262-fold, respectively. Form I and II of beta-glucuronidase behave differently on DEAE-cellulose chromatography, polyacrylamide gel disc electrophoresis, isoelectric focusing (pH 5.5 and 4.2, respectively), optimum pH (4.4 and 3.4--4.1, respectively), thermal stability, Km (1.2 mM and 0.5 mM with p-nitrophenyl beta-D-glucuronide, 0.3 mM and 0.15 mM with phenolphthalein beta-D-glucuronide as substrates for form I and II, respectively) and V. Their molecular weight, estimated by gel filtration through Sephadex G-200, was about 250000 for both forms. Several subunits were separated by polyacrylamide gel electrophoresis in presence of sodium dodecyl sulphate. This beta-glucuronidase is a glycoprotein, but sialic acid(s) were not detected. The enzyme was very active on synthetic substrates and also on hexasaccharides and tetrasaccharides containing glucuronic acid residues with beta 1 leads to 3 linkages; it had practially no activity on certain glycosaminoglycans. Hg2+ and glucaro-1,4-lactone were very effective inhibitors of this enzyme; the latter by a competitive mechanism.  相似文献   

12.
H C Chang  M S Bergdoll 《Biochemistry》1979,18(10):1937-1942
A method was developed for the isolation of staphylococcal enterotoxin D in highly purified form from cultures of Staphylococcus aureus strain 1151m. The method involves removal of the toxin from the culture supernatant fluid with the ion-exchange resin CG-50 followed by chromatography on carboxymethylcellulose (twice) and by gel filtration on Sephadex G-75 (twice). The purified toxin is homogeneous by polyacrylamide gel and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and double gel diffusion tests. It is a simple, colorless, antigenic protein with an isoelectric point of 7.4 as determined by isoelectric focusing. Its molecular weight was determined to be 27 300 +/- 700 by molecular sieve chromatography on Sephadex G-100 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its serological activity is stable over a wide range of pH values (1.2--10.7). The enterotoxin consists of 236 amino acid residues and contains no free sulfhydryl groups. End-group analysis showed serine to be the NH2-terminal amino acid and lysine to be the COOH-terminal amino acid.  相似文献   

13.
The esterase profile of a lipase from Candida cylindracea   总被引:2,自引:0,他引:2  
A commercial preparation of a lipase produced by Candida cylindracea catalysed the hydrolysis of both long- and short-chain esters of p-nitrophenol. Six major bands of hydrolytic activity to alpha-naphthyl acetate were detected on polyacrylamide gel electrophoresis and two on isoelectric focusing. The esterase activity fractionated into two major peaks of activity on ion-exchange chromatography and into several peaks of activity on hydrophobic interaction chromatography. These esterase activities showed different substrate specificities to p-nitrophenyl esters, tributyrin and cetyl palmitate.  相似文献   

14.
Resistance to methyl-parathion among Nebraska western corn rootworm, Diabrotica virgifera virgifera LeConte, populations is associated with increased hydrolytic metabolism of an organophosphate insecticide substrate. An electrophoretic method to identify resistant individuals based on the staining intensity of esterase isozymes on nondenaturing polyacrylamide gels was developed. Three groups of esterases (I, II, and III) were visible on the gels, but only group II esterase isozymes were intensified in resistant populations. A total of 26 and 31 field populations of western corn rootworms from Nebraska (in 1998 and 1999, respectively) were assessed with nondenaturing polyacrylamide gel electrophoresis (PAGE) assays and diagnostic concentration bioassays. Significant correlations were observed between the two diagnostic assays. Group II esterase isozymes provide a reliable biochemical marker for detection of methyl-parathion resistance in individual western corn rootworms and a tool for monitoring the frequency of resistant individuals in field populations.  相似文献   

15.
A protein catalyzing the hydrolysis of cholesterol esters and p-nitrophenyl acetate has been purified 200-fold from porcine pancreas. The enzyme is homogenous as judged by polyacrylamide gel electrophoresis and exhibits a molecular weight of 80 000 as determined by sodium dodecyl sulfate electrophoresis and gel filtration. Activity toward p-nitrophenylacetate exhibits a broad pH optimum and is influenced by a group with a pKa of 5.5--6.0. The enzyme is completely inhibited by diisopropylfluorophosphate at concentrations as low as 10(-5) M, suggesting that it is a serine esterase. Partial inhibition was observed with p-chloromercuribenzoate.  相似文献   

16.
The number and the substrate specificities of glutathione thiol esterases of human red blood cells have been investigated by gel electrophoresis and isoelectric focusing and staining methods devised for the location of these enzymes on gels. Several glutathione thiol esterase forms, both unspecific (with respect to the S-acyl group of the substrate) and specific were found. Electrophoresis on both polyacrylamide and agarose gels resolved three enzyme components with apparently similar substrate specificity. Isoelectric focusing in liquid column separated two unspecific thiol esterase components with S-lactoylglutathione (pI = 8.4) and S-propionylglutathione (pI = 8.1) as the best substrates, respectively, and two specific enzymes, S-formylglutathione hydrolase (pI = 5.2) and S-succinylglutathione hydrolase (pI = 9.0). Isoelectric focusing on polyacrylamide gel resolved nine unspecific glutathione thiol esterase bands (between pH values 7.0 and 8.4). Partially purified glyoxalase II (S-2-hydroxyacylglutathione hydrolase, EC 3.1.2.6) from erythrocytes or liver still gave three components on electrophoresis and several activity bands on gel electrofocusing. These results indicate that human red cells contain at least four separate glutathione thiol esterases. Glyoxalase II, one of these enzymes, apparently occurs in multiple forms. These were neither influenced by preptreatment of the samples with neuraminidase or thiols nor were interconvertible during the fractionations.  相似文献   

17.
Rat preputial gland beta-glucuronidase [ED 3.2.1.31] was purified by ammonium sulfate precipitation, ethanol fractionation, gel filtration on Sephadex G-200 and crystallization. The purified enzyme appeared homogeneous on electrophoresis in polyacrylamide gel, and on analytical ultracentrifugation and had a molecular weight of approximately 320,000, and a sedimentation coefficient of 12S. SDS polyacrylamide gel electrophoresis indicated that the enzyme consisted of subunits with molecular weight of 79,000, so the native enzyme appeared to be a tetramer. The Km with p-nitrophenyl beta-D-glucosiduronic acid as substrate was about 0.53 mM. The enzyme had a single pH optimum at 4.5. The enzyme had a very low content of sulphur-containing amino acid and contained 5.7 per cent carbohydrate, consisting of mannose, glucose, fucose, galactose, and glucosamine in a ratio of 44;9;6;2;41. Sialic acid was not detected in the crystallized enzyme.  相似文献   

18.
K. Meghji  O. P. Ward    A. Araujo 《Applied microbiology》1990,56(12):3735-3740
Bacillus subtilis NRRL 365 produced high extracellular carboxyl esterase activity in submerged culture media containing wheat bran, corn steep liquor, and salts. Supplementation of this medium with glucose reduced esterase activity to 37% of that in the unsupplemented control. Esterase activity was purified by ammonium sulfate fractionation, DEAE-Sephadex A-50 ion-exchange chromatography with sodium chloride gradient elution, and preparative polyacrylamide gel electrophoresis. The resultant purified components, esterases I and II, manifested single bands following silver staining of polyacrylamide gel electrophoresis gels and had final specific activities of 80 and 520 U/mg, respectively. Molecular weights for components I and II were 36,000 and 105,000 to 110,000, respectively. Esterases I and II both had a pH optimum of 8.0, with relative activities of 10 and 85%, respectively, at pH 9.0. Kms with p-nitrophenylacetate were 0.91 mM for esterase I and 0.67 mM for esterase II. In general, patterns of enzyme inhibition were similar for both components. Differences were observed in the relative activities of esterases I and II towards p-nitrophenyl esters of acetate, propionate, and butyrate; Activity ratios for components I and II were 100:94:48 and 100:36:23, respectively. The purified components did not hydrolyze long-chain triglycerides and did not manifest proteolytic activity.  相似文献   

19.
The molecular weights of esterase and peroxidase isozymes of maize seedlings were directly determined by improved polyacrylamide gradient gel electrophoresis. The different isozyme bands developed in polyacrylamide slab gel electrophoresis (uniform gel) were identified in polyacrylamide gradient gel electrophoresis by means of isozyme variants. The molecular weights of esterase isozymes E1, E2, E3F, E3S, a, b, c, named according to isozyme patterns in uniform gel, are <20000, 35200, 33000, 38500, 29900, 28500, 34000 doltons respectively. The molecular weights of peroxidase isozymes PX4F and PX4S are 131000 and 149000 doltons respectively. According to the band location in uniform gel and in gradient gel, some biochemical properties of the isozyme bands and relationships between the isozyme bands were analyzed. The possible errors in the determination of smaller molecular weight isozymes are discussed.  相似文献   

20.
Phytopathogenic fungi penetrate plants by breaking down the cuticular barrier with cutinase. Cutinases are extracellular hydrolytic enzymes that degrade cutin, a polyester composed of hydroxy and epoxy fatty acids. Until now, cutinase has been recognized by its ability to release labeled cutin monomers or by a non-specific esterase assay based on the hydrolysis of p-nitrophenyl esters of short fatty acids. In this work, an insoluble p-nitrophenyl derivative was synthesized and purified, and its structure was determined to be 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate (pNMSEH) by nuclear magnetic resonance (H+ NMR) analysis. pNMSEH was tested as a new cutinase substrate with Pseudomonas mandocino cutinase and porcine liver esterase. While a linear release over time of p-nitrophenol (pNP) was recorded in the presence of cutinase, no response was obtained with the esterase. The calculated kinetic parameters of pNMSEH hydrolysis by cutinase revealed a high specificity (Km=1.8mM), albeit a low catalytic rate (Vmax=10.5 micromol min(-l)l(-1)). This new synthetic substrate may be helpful for detecting and assaying cutinase activity in mixed solutions, such as crude fungal extracellular extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号