首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we investigated long-term memory for unpleasant, neutral and spider pictures in 15 spider-fearful and 15 non-fearful control individuals using behavioral and electrophysiological measures. During the initial (incidental) encoding, pictures were passively viewed in three separate blocks and were subsequently rated for valence and arousal. A recognition memory task was performed one week later in which old and new unpleasant, neutral and spider pictures were presented. Replicating previous results, we found enhanced memory performance and higher confidence ratings for unpleasant when compared to neutral materials in both animal fearful individuals and controls. When compared to controls high animal fearful individuals also showed a tendency towards better memory accuracy and significantly higher confidence during recognition of spider pictures, suggesting that memory of objects prompting specific fear is also facilitated in fearful individuals. In line, spider-fearful but not control participants responded with larger ERP positivity for correctly recognized old when compared to correctly rejected new spider pictures, thus showing the same effects in the neural signature of emotional memory for feared objects that were already discovered for other emotional materials. The increased fear memory for phobic materials observed in the present study in spider-fearful individuals might result in an enhanced fear response and reinforce negative beliefs aggravating anxiety symptomatology and hindering recovery.  相似文献   

2.
1. Australian crab spiders exploit the plant–pollinator mutualism by reflecting UV light that attracts pollinators to the flowers where they sit. However, spider UV reflection seems to vary broadly within and between individuals and species, and we are still lacking any comparative studies of prey and/or predator behaviour towards spider colour variation. 2. Here we looked at the natural variation in the coloration of two species of Australian crab spiders, Thomisus spectabilis and Diaea evanida, collected from the field. Furthermore, we examined how two species of native bees responded to variation in colour contrast generated by spiders sitting in flowers compared with vacant flowers. We used data from a bee choice experiment with D. evanida spiders and Trigona carbonaria bees and also published data on T. spectabilis spiders and Austroplebeia australis bees. 3. In the field both spider species were always achromatically (from a distance) undetectable but chromatically (at closer range) detectable for bees. Experimentally, we showed species‐specific differences in bee behaviour towards particular spider colour variation: T. carbonaria bees did not show any preference for any colour contrasts generated by D. evanida spiders but A. australis bees were more likely to reject flowers with more contrasting T. spectabilis spiders. 4. Our study suggests that some of the spider colour variation that we encounter in the field may be partly explained by the spider's ability to adjust the reflectance properties of its colour relative to the behaviour of the species of prey available.  相似文献   

3.
Evolutionary explanations of disgust propensity propose that disgust is an adaptation which helps us to decrease the likelihood of being infected by pathogens. To test this hypothesis, we examined human fear, disgust and self-perceived danger as a response on colourful pictures of disease-relevant and disease-irrelevant invertebrates. Furthermore, we also examined a possible link between these variables and human anti-parasite behaviour. We found that participants clearly distinguished between disease-relevant and disease-irrelevant group of animals, and that females always scored higher than males. Moreover, there were associations between ratings of fear, disgust and danger and human anti-parasite behaviour. Our results support the hypothesis that human emotions and behaviours are shaped by natural selection.  相似文献   

4.
1. The ability of pollinating insects to discover and evade their predators can affect plant–pollinator mutualisms and have cascading ecosystem effects. Pollinators will avoid flowers with predators, but it is not clear how far away they will move to continue foraging. If these distances are relatively small, the impact of predators on the plant–pollinator mutualism may be lessened. The plant could continue to receive some pollination, and pollinators would reduce the time and energy needed to search for another patch. 2. A native crab spider, Xysticus elegans, was placed on one cluster in a small array of Baccharis pilularis inflorescence clusters, and the preferred short‐range foraging distances of naturally visiting pollinators was determined. 3. Nearly all pollinator taxa (honey bees, wasps, other Hymenoptera, and non‐bombyliid flies) spent less time foraging on the predator cluster. 4. The key result of this study is that inflorescences within 90 mm of the crab spider were avoided by visiting honey bees and wasps, which spent three‐ and 18‐fold more time, respectively, foraging on more distant flower clusters. 5. Whether honey bees can use olfaction to detect spiders was then tested, and this study provides the first demonstration that honey bees will avoid crab spider odour alone at a food source.  相似文献   

5.
Predator–prey interactions are important in maintaining the structure and dynamics of ecological communities. Both predators and prey use cues from a range of sensory modalities to detect and assess one another; identification of these cues is necessary to understand how selection operates to shape predator–prey interactions. Mud-dauber wasps (Sphecidae) provision their larval nests with paralyzed spiders, and different genera of wasps specialize on particular spider taxa. Sceliphron caementarium (Drury 1773) wasps preferentially capture spiders that build two-dimensional (2D) webs, rather than those that construct three-dimensional (3D) webs, but the basis of this preference is not clear. Wasps may choose spiders based on an assessment of their web architecture, as 3D webs may provide better defenses against wasp predation than do 2D webs. However, because many hymenopterans use chemical cues to locate and recognize prey, it is also possible that mud-dauber wasps rely on chemical cues associated with the spider and/or the web to assess prey suitability. When we offered foraging S. caementarium wasps 2D and 3D spiders both on and off their webs, we found that in both cases the wasps took 2D spiders and avoided 3D spiders, demonstrating that the web itself is not the impediment. Results of a series of behavioral choice assays involving filter paper discs containing spider cues and chemically manipulated spiders or spider dummies corroborated the importance of spider chemical cues in mediation of prey recognition by mud-dauber wasps. We also discuss the relative importance of visual and chemical cues for prey recognition by wasps, examine the anti-predator behaviors of 2D and 3D spiders, and consider the role of wasp predation in spider diversification.  相似文献   

6.
Predator–prey relationships are generally based on arm-race. Wasps and spiders are both predators, which could be potential prey for each other. The orb weaver spider Zygiella x-notata is sometimes a prey for the wasp Vespula germanica. We observed the wasp hunting behaviour under natural conditions, and we tested the influence of the spider’s behaviour on the wasp attack success. Wasps were active predators during the reproductive period of the spider. Results showed that wasps located more easily male spiders than females particularly when they were engaged in mate guarding. Female location depended on the presence of a web, but also of prey or prey remains in the web. On the other hand, their location depend neither on the characteristics and the position of the retreat in the environment nor on the size of the web. After location, males were more often captured than females whatever their behaviour (mate guarding or not). Presence of prey remains or prey in the web did not increase the risk for the spider to be captured. There was also no influence of the retreat’s characteristics or of its position in the habitat on the risk for the spider to be captured; but wasp successful attacks were less numerous when silk was present around the entrance of the retreat or when the spider was completely inside. As prey and prey remains favoured location of spiders by the wasps, we tested spider web cleaning behaviour as a response to wasp predatory pressure. By throwing small polystyrene pellets in the webs, we observed that more 80% of the spiders rejected the pellets in less than one minute. Our data indicated that wasps were significant predators of Z. x-notata and wasp attack could have been a selective pressure that had favoured spider defensive behaviours such as web cleaning.  相似文献   

7.
According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.  相似文献   

8.
1. The enzymatic, hemorrhagic, procoagulant and anticoagulant activities of venoms of some animals including snakes, lizards, toads, scorpions, spider, wasps, bees and ants were compared.2. Snake venom was the richest source of enzymes among the animal venoms. Most other animal venoms were devoid of phosphodiesterase, l-amino acid oxidase, alkaline phosphomonoesterase and acetylcholinesterase activities and only a few exhibited arginine ester hydrolase activity. These venoms, however, exhibited wide ranges of protease, 5'-nucleotidase and hyaluronidase activities. Most of the animal venoms examined exhibited some phospholipase A activity.3. Other than snake venoms, only venoms of the toad Bufo calamita and the lizards were hemorrhagic, and only venoms of the social wasps, social bees and harvester ant exhibited strong anticoagulant activity. Procoagulant activity occurs only in snake venoms.  相似文献   

9.
Homing by the nocturnal Namib Desert spider Leucorchestris arenicola (Araneae: Sparassidae) is comparable to homing in diurnal bees, wasps and ants in terms of path length and layout. The spiders'' homing is based on vision but their basic navigational strategy is unclear. Diurnal homing insects use memorised views of their home in snapshot matching strategies. The insects learn the visual scenery identifying their nest location during learning flights (e.g. bees and wasps) or walks (ants). These learning flights and walks are stereotyped movement patterns clearly different from other movement behaviours. If the visual homing of L. arenicola is also based on an image matching strategy they are likely to exhibit learning walks similar to diurnal insects. To explore this possibility we recorded departures of spiders from a new burrow in an unfamiliar area with infrared cameras and analysed their paths using computer tracking techniques. We found that L. arenicola performs distinct stereotyped movement patterns during the first part of their departures in an unfamiliar area and that they seem to learn the appearance of their home during these movement patterns. We conclude that the spiders perform learning walks and this strongly suggests that L. arenicola uses a visual memory of the burrow location when homing.  相似文献   

10.
The prey capture behaviour of the orb-web spider Argiope keyserlingi Karsch was examined experimentally by subjecting spiders to two different feeding regimes (food deprived and food satiated) and three types of prey: Drosophila, blowflies (Lucilia cuprina) and bees (Apis mellifera). The attack behaviour of the spiders was influenced by both their foraging history and the type of prey. Food deprived spiders attacked Drosophila and bees more frequently than food satiated spiders, and food satiated spiders travelled more slowly to any of the prey types than food deprived spiders. Furthermore, Drosophila were never wrapped in silk but only grasped with the chelicerae, whereas both blowflies and bees were always wrapped. This provides experimental confirmation that feeding history affects the decision of orb-web spiders to accept or reject any given prey.  相似文献   

11.
The Mexican colonial web-building spider Metepeira incrassata is frequently attacked by predatory wasps from a number of families. Previous studies have shown that wasps often attack more than one spider during a ‘run’ on a colony, but capture success declines as colony size increases, and that spiders in the central core of the colony have lower risk (Rayor & Uetz 1990, Behavioral Ecology and Sociobiology, 27, 77-85; Uetz & Hieber 1994, Behavioral Ecology, 5, 326-333). We used data from direct observation of attacks and field experiments to test the hypothesis that colonial web-building spiders benefit from ‘early warning’ of predator approach through vibrations in the colony web. Analysis of 135 naturally occurring wasp attack ‘runs’ (attacks on 454 spiders) showed that the per-attack run and per-spider capture success of wasps decreased significantly with increased spider colony size. Spider defensive and evasive behaviours observed in a subset of these attacks varied with the attack sequence. Evasive responses by spiders were more frequent later in the attack, suggesting advance warning of predator approach. Experiments using a predator-simulating vibration source demonstrated that mean reaction distance of spiders increased with increasing colony size. Adult female spiders in core positions reacted at greater distances than those on the periphery, but immature spiders, whose capture risk is lower, showed no difference. Behaviour of spiders during simulated attacks was similar to observed encounters with wasps: evasive responses were more frequent and response latency was shorter in spiders attacked later in the sequence, and in many cases, spiders took evasive action prior to any contact with the stimulus. Additional experiments testing isolated cues (web contact, airborne vibration, web-borne vibration) suggest spiders respond to web-borne vibrations generated by predators and evasive behaviours of other spiders. Together, these results support the ‘early warning’ hypothesis of antipredator benefits for colonial web-building spiders.  相似文献   

12.
13.
Grasshoppers must gather food while avoiding size-selective predation from other arthropods, especially spiders, potentially leading to a trade-off between foraging and defensive behaviors. This trade-off becomes less intense as prey grow larger and are less susceptible to arthropod predation. Activity budgets were constructed for three nymphal (third- to fifth- instar) and adult life cycle stages of Ageneotettix deorum, a common rangeland grasshopper, for three conditions of predation risk by lycosid spiders (spider absence, spider presence, and presence of a nonlethal, chelicerae-modified spider). In third and fourth instars, exposure to predators resulted in reduced feeding activity, increased time spent in antipredator and defensive behaviors, and reduced general activity compared to individuals not exposed to spiders. No significant shifts in behaviors were observed for fifth-instar nymphs and adult A. deorum in response to spider presence. Activity levels in functional spiders and chelicerae-modified spiders were statistically indistinguishable.  相似文献   

14.
The conversion of natural lands in urban areas is exponentially increasing worldwide, causing a major decline in biodiversity. Environmental alterations caused by urbanization, such as land conversion and isolation of natural patches, favour tolerant and generalist species, causing both species loss and replacement. In addition, selective pressure is exerted on particular functional traits, driving a functional homogenization or turnover of biotic communities. We sampled ground arthropods within the municipality of Turin (NW-Italy), wherein an isolated and a connected control subplot were repeatedly sampled at 15 stations distributed along a gradient of increasing urbanization. Such a nested sampling design allowed us to investigate the taxonomic and the functional responses of carabids and spiders to both the urbanization level and patch isolation. First, we highlighted the dominant role played by species homogenization (nestedness) in explaining both taxonomic and functional variation in both groups of arthropods. Secondly, we showed that urbanization causes simultaneously functional homogenization and replacement in both carabid and spider assemblages, whereas patch isolation influences carabid species composition and homogenizes and shifts spider taxonomic and functional composition. Lastly, by relating community-weighted means of body length, dispersal capacity and trophic strategy to the urbanization and isolation gradients, we demonstrated that urbanization alters the trophic structure of both taxonomic groups and increases the average dispersal capacity of spiders. On the other hand, patch isolation affected the functional composition of spiders only, reducing the body size and increasing dispersal capacity and the proportion of web-builder species. Our results demonstrate that both urbanization and patch isolation alter species composition by causing functional and taxonomic homogenization. In addition, they exert a strong filtering effect on community functional traits, increasing the proportion of phytophagous species in carabids, and increasing dispersal capacity and web-builders occurrence in spiders, while reducing spider body size.  相似文献   

15.
Portia is a web-invading araneophagic spider that uses aggressive mimicry to deceive its prey. The present paper is a first step toward clarifying experimentally the cues that govern Portia's decisions of whether to enter a web, whether to make signals once in a web, and whether to persist at signalling once started. The following conclusions are supported: cues from seeing a web elicit web entry, but volatile chemical cues from webs of prey spiders are not important; seeing a spider in a web increases Portia's inclination to enter the web; after web entry, cues from webs of prey spiders are sufficient to elicit signalling behaviour, even in the absence of other cues coming directly from the prey spider; seeing a prey spider or detecting vibrations on the web make Portia more prone to signal, but volatile chemical cues from prey spiders are not important; once Portia is on a web and signalling, seeing a moving spider and detecting vibrations on the web encourage Portia to persist in signalling; on the basis of visual cues alone, Portia can distinguish between quiescent spiders, insects and eggsacs.  相似文献   

16.
Data abstracted from 34 death certificates indicate that the three venomous animal groups most often responsible for human deaths in California from 1960 through 1976 were Hymenoptera (bees, wasps, ants and the like) (56 percent), snakes (35 percent) and spiders (6 percent). An average incidence of 2.0 deaths per year occurred during these 17 years, or an average death rate of 0.01 per 100,000 population per year. Nearly three times more males than females died of venomous animal bites and stings. Half of the deaths from venomous snake bites occurred in children younger than 5 years of age. Susceptible persons 40 years or older appeared to be particularly vulnerable to hymenopterous insect stings and often quickly died of anaphylaxis. Fatal encounters with venomous animals occurred more often around the home than at places of employment or during recreational activities. Deaths resulting from spider bites are rare in California but many bites are reported. Medical practitioners are urged to seek professional assistance in identifying offending animals causing human discomfort and to use these animals'' scientific names on death certificates and in journal articles.  相似文献   

17.
Wolbachia pipientis is an endosymbiotic bacterium common to arthropods and filarial nematodes. This study presents the first survey and characterization of Wolbachia pipientis that infect spiders. All spiders were collected from Queensland, Australia during 2002–2003 and screened for Wolbachia infection using PCR approaches. The Wolbachia strains present in the spiders are diverse, paraphyletic, and for the most part closely related to strains that infect insects. We have also identified several spider Wolbachia strains that form a lineage outside the currently recognized six main Wolbachia supergroups (A–F). Incongruence between spider and Wolbachia phylogenies indicates a history of horizontal transmission of the bacterium in these host taxa. Like other arthropods, spiders are capable of harboring multiple Wolbachia strains.  相似文献   

18.
Communities are mostly composed of rare species; yet, the factors that determine their patterns of occurrence remain obscure. Theory predicts that, in contrast with common species, the occurrence of rare species will be poorly correlated with environmental variables (niches) and more affected by stochasticity (ecological drift), but how this pattern varies across different trophic groups is still poorly understood. Here, we compared the ability of environmental variables (bottom–up biotic niches) to predict the occurrence of plant‐dwelling arthropods across different abundance classes in the Cape Floristic Region of South Africa. We compared three trophic groups, including 104 herbivorous hemipteran, 171 parasitoid wasp and 84 spider species, totalling 4511 individuals in 48 quadrats. To quantify bottom–up biotic niches, we studied the influences of species composition of plants on hemipterans, and of plants and hemipterans on spiders and wasps. We compared the observed strength of the correlation between rare species and their niches with expectations that were generated by repeatedly rarefying abundant species. A large proportion of arthropod species were very rare, i.e. with only one or two individuals (49–55%). Although rarefying abundant species greatly decreased the correlation with bottom–up biotic niches, bottom–up biotic niches generally better predicted the occurrence of rarefied abundant species than very rare ones, suggesting a greater influence of drift on very rare arthropods. That is, (very) rare arthropods are distributed more randomly than rarefied abundant species. Nevertheless, trophic groups differed in the details of their response to bottom–up biotic niches. Plant species composition was a better predictor of rarefied abundant than truly rare hemipterans. In contrast, the importance of bottom–up biotic niches among abundance classes varied less visibly in spiders and wasps. Our study thus suggests that the importance of niches in structuring arthropod communities depends on species rarity and trophic group.  相似文献   

19.
This review analyses the accumulating evidence from psychological, psychophysiological, neurobiological and cognitive studies suggesting that the disease-avoidance emotion of disgust is a predominant emotion experienced in a number of psychopathologies. Current evidence suggests that disgust is significantly related to small animal phobias (particularly spider phobia), blood-injection-injury phobia and obsessive-compulsive disorder contamination fears, and these are all disorders that have primary disgust elicitors as a significant component of their psychopathology. Disgust propensity and sensitivity are also significantly associated with measures of a number of other psychopathologies, including eating disorders, sexual dysfunctions, hypochondriasis, height phobia, claustrophobia, separation anxiety, agoraphobia and symptoms of schizophrenia--even though many of these psychopathologies do not share the disease-avoidance functionality that characterizes disgust. There is accumulating evidence that disgust does represent an important vulnerability factor for many of these psychopathologies, but when disgust-relevant psychopathologies do meet the criteria required for clinical diagnosis, they are characterized by significant levels of both disgust and fear/anxiety. Finally, it has been argued that disgust may also facilitate anxiety and distress across a broad range of psychopathologies through its involvement in more complex human emotions such as shame and guilt, and through its effect as a negative affect emotion generating threat-interpretation biases.  相似文献   

20.
Wolfgang Nentwig 《Oecologia》1985,66(4):580-594
Summary The actual prey in the orb webs of four araneid spiders (Nephila clavipes, Eriophora fuliginea, Argiope argentata, and A. savignyi) and the relative abundance of their potential prey (pitfall traps, yellow traps, and sweep-netting) was investigated over 1 year at different locations in Panama. The relative abundance of insects and spiders depends on seasonal fluctuations (Fig. 2) which are reflected by corresponding variations in the effectiveness of the webs. The main prey groups are Nematocera (50%–68%), winged Formicoidea (6%–15%) and Hymenoptera, Coleoptera, and Brachycera (4%–10% each) (Fig. 4-6). The remaining 10%–17% of the prey comes from up to 26 other groups (Table 2). Differences in prey size and prey composition between the spider species are small (Fig. 7). Most prey items are 1–2 mm long: only a few insects exceed 30 mm body length (Figs. 9–12). Relative to the available prey, some groups (e.g. Nematocera, Aphidoidea, Psocoptera) are caught selectively, while other groups (e.g. Heteroptera, Coleoptera, Brachycera, Orthoptera) are underrepresented in the prey spectrum and obviously avoid orb webs (Table 7). The differences in prey composition between araneids of the tropics and of the temperate zone are discussed (Table 8) and compared to those recorded in other studies (Table 9, 10). Most of these report large numbers of big prey items (Odonata, Lepidoptera, wasps/bees). It is pointed out that those studies do not take into account the total available prey in a spider's web but only that part which the spider selects from the web (mainly according to size). The importance of small prey items even for large spiders is explained and an obvious lack of niche partitioning among coexisting araneids is discussed (Table 11).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号