首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
There is increasing emphasis on the use of systems biology approaches to define radiation-induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examples to illustrate how imaging approaches have furthered our understanding of radiation-induced cellular signaling. Particular emphasis is placed on protein colocalization, and oscillatory and transient signaling dynamics.  相似文献   

2.
The longstanding use of Drosophila as a model for cell and developmental biology has yielded an array of tools. Together, these techniques have enabled analysis of cell and developmental biology from a variety of methodological angles. Live imaging is an emerging method for observing dynamic cell processes, such as cell division or cell motility. Having isolated mutations in uncharacterized putative cell cycle proteins it became essential to observe mitosis in situ using live imaging. Most live imaging studies in Drosophila have focused on the embryonic stages that are accessible to manipulation and observation because of their small size and optical clarity. However, in these stages the cell cycle is unusual in that it lacks one or both of the gap phases. By contrast, cells of the pupal wing of Drosophila have a typical cell cycle and undergo a period of rapid mitosis spanning about 20 hr of pupal development. It is easy to identify and isolate pupae of the appropriate stage to catch mitosis in situ. Mounting intact pupae provided the best combination of tractability and durability during imaging, allowing experiments to run for several hours with minimal impact on cell and animal viability. The method allows observation of features as small as, or smaller than, fly chromosomes. Adjustment of microscope settings and the details of mounting, allowed extension of the preparation to visualize membrane dynamics of adjacent cells and fluorescently labeled proteins such as tubulin. This method works for all tested fluorescent proteins and can capture submicron scale features over a variety of time scales. While limited to the outer 20 µm of the pupa with a conventional confocal microscope, this approach to observing protein and cellular dynamics in pupal tissues in vivo may be generally useful in the study of cell and developmental biology in these tissues.  相似文献   

3.
4.
Lymph nodes (LNs) are secondary lymphoid organs, which are strategically located throughout the body to allow for trapping and presentation of foreign antigens from peripheral tissues to prime the adaptive immune response. Juxtaposed between innate and adaptive immune responses, the LN is an ideal site to study immune cell interactions1,2. Lymphocytes (T cells, B cells and NK cells), dendritic cells (DCs), and macrophages comprise the bulk of bone marrow-derived cellular elements of the LN. These cells are strategically positioned in the LN to allow efficient surveillance of self antigens and potential foreign antigens3-5. The process by which lymphocytes successfully encounter cognate antigens is a subject of intense investigation in recent years, and involves an integration of molecular contacts including antigen receptors, adhesion molecules, chemokines, and stromal structures such as the fibro-reticular network2,6-12. Prior to the development of high-resolution real-time fluorescent in vivo imaging, investigators relied on static imaging, which only offers answers regarding morphology, position, and architecture. While these questions are fundamental in our understanding of immune cell behavior, the limitations intrinsic with this technique does not permit analysis to decipher lymphocyte trafficking and environmental clues that affect dynamic cell behavior. Recently, the development of intravital two-photon laser scanning microscopy (2P-LSM) has allowed investigators to view the dynamic movements and interactions of individual cells within live LNs in situ12-16. In particular, we and others have applied this technique to image cellular behavior and interactions within the popliteal LN, where its compact, dense nature offers the advantage of multiplex data acquisition over a large tissue area with diverse tissue sub-structures11,17-18. It is important to note that this technique offers added benefits over explanted tissue imaging techniques, which require disruption of blood, lymph flow, and ultimately the cellular dynamics of the system. Additionally, explanted tissues have a very limited window of time in which the tissue remains viable for imaging after explant. With proper hydration and monitoring of the animal''s environmental conditions, the imaging time can be significantly extended with this intravital technique. Here, we present a detailed method of preparing mouse popliteal LN for the purpose of performing intravital imaging.  相似文献   

5.
6.
Sphingosine-1-phosphate (S1P) is a bioactive lipid that provides cellular signals through plasma membrane G protein-coupled receptors. The S1P receptor signaling system has a fundamental and widespread function in licensing the exit and release of hematopoietically derived cells from various tissues into the circulation. Although the outlines of the mechanism have been established through genetic and pharmacologic perturbations, the temporal and spatial dynamics of the cellular events involved have been unclear. Recently, two-photon intravital imaging has been applied to living tissues to visualize the cellular movements and interactions that occur during egress processes. Here we discuss how some of these recent findings provide a clearer picture regarding S1P receptor signaling in modulating cell egress into the circulation. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

7.
8.
The microvascular networks in the body of vertebrates consist of the smallest vessels such as arterioles, capillaries, and venules. The flow of red blood cells (RBCs) through these networks ensures the gas exchange in as well as the transport of nutrients to the tissues. Any alterations in this blood flow may have severe implications on the health state. Because the vessels in these networks obey dimensions similar to the diameter of RBCs, dynamic effects on the cellular scale play a key role. The steady progression in the numerical modeling of RBCs, even in complex networks, has led to novel findings in the field of hemodynamics, especially concerning the impact and the dynamics of lingering events when a cell meets a branch of the network. However, these results are yet to be matched by a detailed analysis of the lingering experiments in vivo. To quantify this lingering effect in in vivo experiments, this study analyzes branching vessels in the microvasculature of Syrian golden hamsters via intravital microscopy and the use of an implanted dorsal skinfold chamber. It also presents a detailed analysis of these lingering effects of cells at the apex of bifurcating vessels, affecting the temporal distribution of plasmatic zones of blood flow in the branches and even causing a partial blockage in severe cases.  相似文献   

9.
Visualization of single molecules and specific subsets of cells is widely used for studies of biological processes and particularly in immunological research. Recent technological advances have provided a qualitative change in biological visualization from studying of ??snapshot?? pictures to real-time continuous observation of cellular dynamics in vivo. Contemporary methods of in vivo imaging make it possible to localize specific cells within organs and tissues, to study their differentiation, migration, and cell-to-cell interactions, and to follow some intracellular events. Fluorescence intravital microscopy plays an especially important role in high resolution molecular imaging. The methods of intravital microscopy are quickly advancing thanks to improvements in molecular sensors, labeling strategies, and detection approaches. Novel techniques allow simultaneous detection of various probes with better resolution and depth of imaging. In this review, we describe current methods for in vivo imaging, with special accent on fluorescence approaches, and discuss their applications for medical and biological studies.  相似文献   

10.
Swarming represents a special case of bacterial behavior where motile bacteria migrate rapidly and collectively on surfaces. Swarming and swimming motility of bacteria has been studied well for rigid, self-propelled rods. In this study we report a strain of Vibrio alginolyticus, a species that exhibits similar collective motility but a fundamentally different cell morphology with highly flexible snake-like swarming cells. Investigating swarming dynamics requires high-resolution imaging of single cells with coverage over a large area: thousands of square microns. Researchers previously have employed various methods of motion analysis but largely for rod-like bacteria. We employ temporal variance analysis of a short time-lapse microscopic image series to capture the motion dynamics of swarming Vibrio alginolyticus at cellular resolution over hundreds of microns. Temporal variance is a simple and broadly applicable method for analyzing bacterial swarming behavior in two and three dimensions with both high-resolution and wide-spatial coverage. This study provides detailed insights into the swarming architecture and dynamics of Vibrio alginolyticus isolate B522 on carrageenan agar that may lay the foundation for swarming studies of snake-like, nonrod-shaped motile cell types.  相似文献   

11.
In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.  相似文献   

12.
The mucosa of the gastrointestinal tract is a dynamic tissue composed of numerous cell types with complex cellular functions. Study of the vital intestinal mucosa has been hampered by lack of suitable model systems. We here present a novel animal model that enables highly resolved three-dimensional imaging of the vital murine intestine in anaesthetized mice. Using intravital autofluorescence 2-photon (A2P) microscopy we studied the choreographed interactions of enterocytes, goblet cells, enteroendocrine cells and brush cells with other cellular constituents of the small intestinal mucosa over several hours at a subcellular resolution and in three dimensions. Vigorously moving lymphoid cells and their interaction with constituent parts of the lamina propria were examined and quantitatively analyzed. Nuclear and lectin staining permitted simultaneous characterization of autofluorescence and admitted dyes and yielded additional spectral information that is crucial to the interpretation of the complex intestinal mucosa. This novel intravital approach provides detailed insights into the physiology of the small intestine and especially opens a new window for investigating cellular dynamics under nearly physiological conditions.  相似文献   

13.
代谢网络在各种细胞功能和生命过程中发挥着至关重要的作用。随着细胞网络重建工程的迅速发展,可用的基因组水平代谢网络越来越多,因而计算方法在这些网络的结构功能分析中越来越重要。基于约束的建模方法不像图论方法那样仅考虑代谢模型的纯拓扑结构,也不像各种动力学建模方法那样需求详尽的热力学参数,因而极具优势。采用基于约束的建模方法对一个含619个基因,655个代谢物和743个代谢反应的金黄色葡萄球菌(Staphylococcusaureus)代谢网络进行了分析,主要研究了该模型的网络结构特征,以及其最优生长率、动态生长情况和基因删除学习等。本研究提供了一个对金黄色葡萄球菌代谢网络进行约束建模分析的初步框架。  相似文献   

14.
The published and authors' data have been summarized on (1) the spectrum and properties of crystallins in different amphibian species, (2) localization and synthesis of crystallins in different cellular compartments of the adult amphibian lens, (3) dynamics of crystallin formation during embryogenesis and (4) lens regeneration from tissues of the larval and adult amphibian eyes. The necessity of more detailed studies of crystallin synthesis during embryogenesis and lens regeneration using molecular biological and biochemical methods is stressed. The significance of this approach is illustrated by the pioneering data of Soviet scientists on crystallin polypeptides and corresponding mRNAs in development of Rana temporaria obtained with the use of DNA-RNA hybridization and immunoelectroblotting.  相似文献   

15.
In eukaryotic cells, a major proportion of the cellular proteins localize to various subcellular organelles where they are involved in organelle-specific cellular processes. Thus, the localization of a particular protein in the cell is an important part of understanding the physiological role of the protein in the cell. Various approaches such as subcellular fractionation, immunolocalization and live imaging have been used to define the localization of organellar proteins. Of these various approaches, the most powerful one is the live imaging because it can show in vivo dynamics of protein localization depending on cellular and environmental conditions without disturbing cellular structures. However, the live imaging requires the ability to detect the organelles in live cells. In this study, we report generation of a new set of transgenic Arabidopsis plants using various organelle marker proteins fused to a fluorescence protein, monomeric Cherry (mCherry). All these markers representing different subcellular organelles such as chloroplasts, mitochondria, peroxisomes, endoplasmic reticulum (ER) and lytic vacuole showed clear and specific signals regardless of the cell types and tissues. These marker lines can be used to determine localization of organellar proteins by colocalization and also to study the dynamics of organelles under various developmental and environmental conditions.  相似文献   

16.
Genetically encoded reporters based on fluorescence resonance energy transfer (FRET) are being developed for analyzing spatiotemporal dynamics of kinase activities in living cells, as the activities of this class of enzymes are often dynamically regulated and spatially compartmentalized within specific signaling context. Here we describe a general modular design and engineering strategies for the development of activity reporters for kinases of interest, using A-kinase activity reporter (AKAR) as an illustrative example. Discussed here are basic structure of such reporters, design considerations, reporter gene construction, cellular and in vitro characterization. Strategies for improving specificity, dynamic range or sensitivity, reversibility and integrity of the reporter as well as basic methods for live-cell time-lapse imaging using these reporters are summarized. Discussion of using this approach in the study of MAPK cascades is also provided. These FRET-based kinase activity reporters, along with analogous probes based on alternative designs, provide real-time tracking of kinase dynamics with subcellular resolution, which should complement other methods and offer great opportunities to delineate the molecular mechanisms underlying the complex regulation of kinases.  相似文献   

17.
During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.  相似文献   

18.
Advances in the technologies for labeling and imaging biological samples drive a constant progress in our capability of studying structures and their dynamics within cells and tissues. In the last decade, the development of numerous nonlinear optical microscopies has led to a new prospective both in basic research and in the potential development of very powerful noninvasive diagnostic tools. These techniques offer large advantages over conventional linear microscopy with regard to penetration depth, spatial resolution, three-dimensional optical sectioning, and lower photobleaching. Additionally, some of these techniques offer the opportunity for optically probing biological functions directly in living cells, as highlighted, for example, by the application of second-harmonic generation to the optical measurement of electrical potential and activity in excitable cells. In parallel with imaging techniques, nonlinear microscopy has been developed into a new area for the selective disruption and manipulation of intracellular structures, providing an extremely useful tool of investigation in cell biology. In this review we present some basic features of nonlinear microscopy with regard both to imaging and manipulation, and show some examples to illustrate the advantages offered by these novel methodologies.  相似文献   

19.
Metabolites and lipids are the final products of enzymatic processes, distinguishing the different cellular functions and activities of single cells or whole tissues. Understanding these cellular functions within a well‐established model system requires a systemic collection of molecular and physiological information. In the current report, the green alga Chlamydomonas reinhardtii was selected to establish a comprehensive workflow for the detailed multi‐omics analysis of a synchronously growing cell culture system. After implementation and benchmarking of the synchronous cell culture, a two‐phase extraction method was adopted for the analysis of proteins, lipids, metabolites and starch from a single sample aliquot of as little as 10–15 million Chlamydomonas cells. In a proof of concept study, primary metabolites and lipids were sampled throughout the diurnal cell cycle. The results of these time‐resolved measurements showed that single compounds were not only coordinated with each other in different pathways, but that these complex metabolic signatures have the potential to be used as biomarkers of various cellular processes. Taken together, the developed workflow, including the synchronized growth of the photoautotrophic cell culture, in combination with comprehensive extraction methods and detailed metabolic phenotyping has the potential for use in in‐depth analysis of complex cellular processes, providing essential information for the understanding of complex biological systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号