首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microscopy is an essential tool for analysis of cellular structures and function. With the advent of new fluorescent probes and super-resolution light microscopy techniques, the study of dynamic processes in living cells has been greatly facilitated. Fluorescence light microscopy provides analytical, quantitative, and three-dimensional (3D) data with emphasis on analysis of live cells using fluorescent markers. Sample preparation is easy and relatively inexpensive, and the use of appropriate tags provides the ability to track specific proteins of interest. Of course, only electron microscopy (EM) achieves the highest definition in terms of ultrastructure and protein labeling. To fill the gap between light microscopy and EM, correlative light and electron microscopy (CLEM) strategies have been developed. In particular, hybrid techniques based upon immuno-EM provide sensitive protein detection combined with high-resolution information on cell structures and protein localization. By adding the third dimension to EM with electron tomography (ET) combined with rapid freezing, CLEM techniques now provide additional tools for quantitative 3D analysis. Here, we overview the major methods applied and highlight the latest advances in the field of CLEM. We then focus on two selected techniques that use cryosections as substrate for combined biomolecular imaging. Finally, we provide a perspective of future developments in the field. (J Histochem Cytochem 57:1103–1112, 2009)  相似文献   

2.
The eukaryotic cell relies on complex, highly regulated, and functionally distinct membrane bound compartments that preserve a biochemical polarity necessary for proper cellular function. Understanding how the enzymes, proteins, and cytoskeletal components govern and maintain this biochemical segregation is therefore of paramount importance. The use of fluorescently tagged molecules to localize to and/or perturb subcellular compartments has yielded a wealth of knowledge and advanced our understanding of cellular regulation. Imaging techniques such as fluorescent and confocal microscopy make ascertaining the position of a fluorescently tagged small molecule relatively straightforward, however the resolution of very small structures is limited. On the other hand, electron microscopy has revealed details of subcellular morphology at very high resolution, but its static nature makes it difficult to measure highly dynamic processes with precision. Thus, the combination of light microscopy with electron microscopy of the same sample, termed Correlative Light and Electron Microscopy (CLEM), affords the dual advantages of ultrafast fluorescent imaging with the high-resolution of electron microscopy. This powerful technique has been implemented to study many aspects of cell biology. Since its inception, this procedure has increased our ability to distinguish subcellular architectures and morphologies at high resolution. Here, we present a streamlined method for performing rapid microinjection followed by CLEM (Fig. 1). The microinjection CLEM procedure can be used to introduce specific quantities of small molecules and/or proteins directly into the eukaryotic cell cytoplasm and study the effects from millimeter to multi-nanometer resolution (Fig. 2). The technique is based on microinjecting cells grown on laser etched glass gridded coverslips affixed to the bottom of live cell dishes and imaging with both confocal fluorescent and electron microscopy. Localization of the cell(s) of interest is facilitated by the grid pattern, which is easily transferred, along with the cells of interest, to the Epon resin used for immobilization of samples and sectioning prior to electron microscopy analysis (Fig. 3). Overlay of fluorescent and EM images allows the user to determine the subcellular localization as well as any morphological and/or ultrastructural changes induced by the microinjected molecule of interest (Fig. 4). This technique is amenable to time points ranging from ≤5 s up to several hours, depending on the nature of the microinjected sample.  相似文献   

3.
Correlative Light Electron Microscopy (CLEM) combines advantages of light microscopy and electron microscopy in one experiment to deliver information above and beyond the capability of either modality alone. There are many different CLEM techniques, each having its own special advantages but also its technical challenges. It is however the biological question that (should) drive(s) the development and application of a specific CLEM technique in order to provide the answer. Here we describe the development of a CLEM technique that is based on the Tokuyasu cryo immuno-gold labelling technique that has allowed us to quantitatively study GLUT4 trafficking.  相似文献   

4.
Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo‐CLEM, the combination of fluorescence cryo‐microscopy (cryo‐FM) permitting for non‐invasive specific multi‐colour labelling, with electron cryo‐microscopy (cryo‐EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence‐based information for guiding cryo‐EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo‐CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano‐environment. However, a major obstacle of cryo‐CLEM currently hindering many biological applications is the large resolution gap between cryo‐FM (typically in the range of ~400 nm) and cryo‐EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super‐resolution cryo‐FM imaging and the correlation with cryo‐EM. This opened the door towards super‐resolution cryo‐CLEM, and thus towards direct correlation of structural details from both imaging modalities.  相似文献   

5.
Green fluorescent protein (GFP)-based video microscopy can provide profound insight into biological processes by generating information on the ‘history,’ or dynamics, of the cellular structures involved in such processes in live cells. A crucial limitation of this approach, however, is that many such structures may not be resolved by light microscopy. Like more recent super-resolution techniques, correlative video-light–electron microscopy (CLEM) was developed to overcome this limitation. CLEM integrates GFP-based video microscopy and electron microscopy through a series of ancillary techniques, such as proper fixation, hybrid labeling and retracing, and so provides sufficient resolution as well as, crucially, cellular ‘context’ to the fluorescent dynamic structures of interest. CLEM ‘multiplies’ the power of video microscopy and is having an important impact in several areas cell and developmental biology. Here, we discuss potential, limitations and perspectives of correlative approaches aimed at integrating the unique insight generated by video microscopy with information from other forms of imaging.  相似文献   

6.
Bioimaging: the visualisation, localisation and tracking of movement of specific molecules in cells using microscopy has become an increasing field of interest within life science research. For this, the availability of fluorescent and electron-dense markers for light and electron microscopy, respectively, is an essential tool to attach to the molecules of interest. In recent years, there has been an increasing effort to combine light and electron microscopy in a single experiment. Such correlative light electron microscopy (CLEM) experiments thus rely on using markers that are both fluorescent and electron dense. Unfortunately, there are very few markers that possess both these properties. Markers for light microscopy such as green fluorescent protein are generally not directly visible in the electron microscopy and vice versa for gold particles. Hence, there has been an intensive search for markers that are directly visible both in the light microscope and in the electron microscope. Here we discuss some of the strategies and pitfalls that are associated with the use of CLEM markers, which might serve as a “warning” that new probes should be extensively tested before use. We focus on the use of CLEM markers for the study of intracellular transport and specifically endocytosis.  相似文献   

7.
Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing.   相似文献   

8.
In the past, ultrastructural studies on chromosome morphology have been carried out using light microscopy, scanning electron microscopy and transmission electron microscopy of whole mounted or sectioned samples. Until now, however, it has not been possible to use all of these techniques on the same specimen. In this paper we describe a specimen preparation method that allows one to study the same chromosomes by transmission, scanning-transmission and scanning electron microscopy, as well as by standard light microscopy and confocal microscopy. Chromosome plates are obtained on a carbon coated glass slide. The carbon film carrying the chromosomes is then transferred to electron microscopy grids, subjected to various treatments and observed. The results show a consistent morphological correspondence between the different methods. This method could be very useful and important because it makes possible a direct comparison between the various techniques used in chromosome studies such as banding, in situ hybridization, fluorescent probe localization, ultrastructural analysis, and colloidal gold cytochemical reactionsAbbreviations CLSM confocal laser scanning microscope - EM electron microscopy - kV kilovolt(s) - LM light microscope - SEM scanning electron microscope - STEM scanning-transmission electron microscope - TEM transmission electron microscope  相似文献   

9.
Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.  相似文献   

10.

Background

In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM) to electron microscopy (EM).

Methodology

To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coordinates that were conserved at every step of the sample preparation and visualization processes. Specifically designed for cryo-fixation, this method allowed a fast freezing of dynamic events within seconds and their ultrastructural characterization. We provide examples of the dynamic oligomerization of GFP-tagged myotubularin (MTM1) phosphoinositides phosphatase induced by osmotic stress, and of the ultrastructure of membrane tubules dependent on amphiphysin 2 (BIN1) expression.

Conclusion

Accessible and versatile, we show that this approach is efficient to routinely correlate functional and dynamic LM with high resolution morphology by EM, with immuno-EM labeling, with 3D reconstruction using serial immuno-EM or tomography, and with scanning-EM.  相似文献   

11.
During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella.  相似文献   

12.
贾星  孙飞  季刚 《植物学报》2022,57(1):24-29
冷冻聚焦离子束-扫描电镜成像(Cryo-FIB-SEM)是一种新兴的成像检测技术,在原位进行冷冻聚焦离子束切割和冷冻扫描电镜成像,为研究天然含水状态下生物样品内部未被破坏的原始结构打开了一扇窗口。近年来,该技术在生命科学领域的应用研究取得了一系列重要进展。该文对其在冷冻体积连续成像、冷冻光电关联成像、冷冻透射扫描成像、冷冻含水切片制备监控及冷冻扫描图像处理等方面的研究进展进行综述,并展望了该技术在大体积生物样品三维原位成像研究领域的前沿性发展趋势,以期推动Cryo-FIB-SEM技术在生物样品三维结构研究中的应用。  相似文献   

13.
光电关联显微镜技术(correlative light and electron microscopy,CLEM)将光学显微镜的高灵敏度和大视场与电子显微镜的高分辨率相结合,弥补了各自成像的局限,可在原位获得更全面、更精细的定位及结构信息,近年来受到广泛关注.目前,该技术广泛应用于亚细胞结构与特定结构的观察、蛋白质的精...  相似文献   

14.
As proteomics initiatives mature, the need will arise for the multiple visualization of proteins and supramolecular complexes within their true context, in situ. Single-stranded DNA and RNA aptamers can be used for low resolution imaging of cellular receptors and cytoplasmic proteins by light microscopy (LM). These techniques, however, cannot be applied to the imaging of nuclear antigens as these single-stranded aptamers bind endogenous RNA and DNA with high affinity. To overcome this problem, we have developed a novel method for the in situ detection of proteins using double-stranded DNA oligonucleotides. To demonstrate this system we have utilized the prokaryotic DNA-binding proteins LacI and TetR as peptide tags to image fusion proteins in situ using dsDNA oligonucleotides encoding either the Lac or Tet operator. Using fluorescent and fluorogold dsDNA oligonucleotides, we localized within the nucleus a TetR–PML fusion protein within promyelocytic leukaemia protein (PML) bodies by LM and a LacI–SC35 fusion protein within nuclear speckles by correlative light and electron microscopy (LM/EM). Isolation of LacI–SC35 was also accomplished by using biotinylated dsDNA and streptavidin sepharose. The use of dsDNA oligonucleotides should complement existing aptamer in situ detection techniques by allowing the multiple detection and localization of nuclear proteins in situ and at high resolution.  相似文献   

15.
Live-cell correlative light and electron microscopy (CLEM) offers unique insights into the ultrastructure of dynamic cellular processes. A critical and technically challenging part of CLEM is the 3-dimensional relocation of the intracellular region of interest during sample processing. We have developed a simple CLEM procedure that uses toner particles from a laser printer as orientation marks. This facilitates easy tracking of a region of interest even by eye throughout the whole procedure. Combined with subcellular fluorescence markers for the plasma membrane and nucleus, the toner particles allow for precise subcellular spatial alignment of the optical and electron microscopy data sets. The toner-based reference grid is printed and transferred onto a polymer film using a standard office printer and laminator. We have also designed a polymer film holder that is compatible with most inverted microscopes, and have validated our strategy by following the ultrastructure of mitochondria that were selectively photo-irradiated during live-cell microscopy. In summary, our inexpensive and robust CLEM procedure simplifies optical imaging, without limiting the choice of optical microscope.  相似文献   

16.
17.
The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution of the electron microscope. Here we report the application of small nanocrystals (Quantum dots; QDs) to specifically and efficiently label multiple distinct endogenous proteins. QDs are both fluorescent and electron dense, facilitating their use for correlated microscopic analysis. Furthermore, QDs can be discriminated optically by their emission wavelength and physically by size, making them invaluable for multilabeling analysis. We developed pre-embedding labeling criteria using QDs that allows optimization at the light level, before continuing with electron microscopy (EM). We provide examples of double and triple immunolabeling using light, electron and correlated microscopy in rat cells and mouse tissue. We conclude that QDs aid precise high-throughput determination of protein distribution.  相似文献   

18.
Background information. CLEM (correlative live cell and electron microscopy) seeks to bridge the data acquired with different imaging strategies, typically between light microscopy and electron microscopy. It has been successfully applied in cell cultures, although its use in multicellular systems is hampered by difficulties in locating the ROI (region of interest). Results. We developed a CLEM technique that enables easy processing of small model animals and is adequate both for morphology and immunoelectron‐microscopic specimen preparations. While this method has been initially developed for Caenorhabditis elegans samples, we found that it works equally well for Drosophila samples. It enables handling and observation of single animals of any complex genotype in real time, fixation by high‐pressure freezing and flat embedding. Our major improvement has been the development of a precise mapping system that considerably simplifies and speeds up the retrospective location of the ROI within 1 μm distance. This method can be successfully used when correlative microscopy is required, as well as to facilitate the treatment of non‐correlative TEM procedures. Our improvements open the possibility to treat statistically significant numbers of animals processed by electron microscopy and considerably simplifies electron‐microscopic protocols, making them more accessible to a wider range of researchers. Conclusions. We believe that this technique will contribute to correlative studies in multicellular models and will facilitate the time‐demanding procedure of specimen preparation for any kind of TEM.  相似文献   

19.
A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.  相似文献   

20.
Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号