首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioelectronics is a progressing interdisciplinary research field that involves the integration of biomaterials with electronic transducers such as electrodes, field-effect transistors or piezoelectric crystals. Surface engineering of biomaterials such as enzymes, antigen-antibodies or DNA on the electronic supports controls the electrical properties of the biomaterial/transducer interface and enables the electronic transduction of biorecognition events, or biocatalyzed transformation, on the transducers. The development of biosensor systems of tailored sensitivities and specificities represents a major advance in bioelectronics.  相似文献   

2.
The electronic and structural properties of pyrrolic ring derivatives were studied using density functional theory (DFT) in terms of their application as organic semiconductor materials in photovoltaic devices. The B3LYP hybrid functional in combination with Pople type 6-31G(d) basis set with a polarization function was used in order to determine the optimized geometries and the electronic properties of the ground state, while transition energies and excited state properties were obtained from time-dependent (TD)-DFT with B3LYP/6-31G(d) calculation. The investigation of pyrrolic derivatives formed by the arrangement of several monomeric units revealed that three-dimensional (3D) conjugated architectures in which the combination of a triphenylamine (TPA) core with π-conjugated rings attached to the core, present the best geometric and electronic characteristics for use as an organic semiconductor material. The highest occupied molecular orbital (HOMO) − lowest unoccupied molecular orbital (LUMO) energy gap was decreased in 3D-structures that extend the absorption spectrum toward longer wavelengths, revealing a feasible intramolecular charge transfer process in these systems. All calculations in this work were performed using the Gaussian 03 W software package.  相似文献   

3.
Energy generation and consumption have always been an important component of social development. Interests in this field are beginning to shift to indoor photovoltaics (IPV) which can serve as power sources under low light conditions to meet the energy needs of rapidly growing fields, such as intelligence gathering and information processing which usually operate via the Internet‐of‐things (IoT). Since the power requirements for this purpose continue to decrease, IPV systems under low light may facilitate the realization of self‐powered high‐tech electronic devices connected through the IoT. This review discusses and compares the characteristics of different types of IPV devices such as those based on silicon, dye, III‐V semiconductors, organic compounds, and halide perovskites. Among them, specific attention is paid to perovskite photovoltaics which may potentially become a high performing IPV system due to the fascinating photophysics of the halide perovskite active layer. The limitations of such indoor application as they relate to the toxicity, stability, and electronic structure of halide perovskites are also discussed. Finally, strategies which could produce highly functional, nontoxic, and stable perovskite photovoltaics devices for indoor applications are proposed.  相似文献   

4.
Direct inkjet printing of functional inks is an emerging and promising technique for the fabrication of electrochemical energy storage devices. Electrochromic energy devices combine electrochromic and energy storage functions, providing a rising and burgeoning technology for next‐generation intelligent power sources. However, printing such devices has, in the past, required additives or other second phase materials in order to create inks with suitable rheological properties, which can lower printed device performance. Here, tungsten oxide nanocrystal inks are formulated without any additives for the printing of high‐quality tungsten oxide thin films. This allows the assembly of novel electrochromic pseudocapacitive zinc‐ion devices, which exhibit a relatively high capacity (≈260 C g?1 at 1 A g?1) with good cycling stability, a high coloration efficiency, and fast switching response. These results validate the promising features of inkjet‐printed electrochromic zinc‐ion energy storage devices in a wide range of applications in flexible electronic devices, energy‐saving buildings, and intelligent systems.  相似文献   

5.
The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single‐junction organic photovoltaic remain smaller than for other solar cell technologies, such as crystalline silicon or perovskite solar cells. In particular, the nonradiative recombinations to the electronic ground state from the lowest‐energy charge‐transfer (CT) states at the donor–acceptor interfaces in the active layer of organic devices, are responsible for a significant part of the voltage losses. Here, to better comprehend the nonradiative voltage loss mechanisms, a fully quantum‐mechanical rate formula is employed within the framework of time‐dependent perturbation theory, combined with density functional theory. The objective is to uncover the specific contributions of intramolecular vibrations to the CT‐state nonradiative recombinations in several model systems, which include small‐molecule and polymer donors as well as fullerene and nonfullerene acceptors.  相似文献   

6.
A bio-inspired photoresponse was engineered in porphyrin-attached Au nanoparticles (AuNPs) on a field-effect transistor (FET). The system mimics photosynthetic electron transfer, using porphyrin derivatives as photosensitizers and AuNPs as photoelectron counting devices. Porphyrin-protected AuNPs were immobilized onto the gate of an FET via the formation of self-assembled monolayers. Photoinduced electron transfer from the porphyrin led to single electron transfer at the Au nanoparticles, which was monitored via a changing gate voltage on the FET in the presence of organic electrolyte. The further attachment of other functional molecules to this system should enable various other potential functionalities. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

7.
The recent boom in deformable or stretchable electronics, flexible transparent displays/screens, and their integration into the human body has facilitated the development of multifunctional energy devices that are stretchable, transparent, wearable, and/or biocompatible while meeting the energy or power requirements. The development of soft energy systems begins with the preparation of relevant conductors and the design of innovative device configurations. In this study, recent advances and trends in stretchable and transparent electronic and ionic conductors are reviewed coupled with the growing efforts to use them for soft energy storage and conversion systems. Stretchable transparent ionic conductors present possibilities for use as current collectors and electrolytes in soft electronic/energy devices, providing novel insight into biofriendly systems for an effective human–machine interaction. Moreover, representative examples that demonstrate soft energy devices based on stretchable transparent ionic/electronic conductors are discussed in detail. Furthermore, the challenges and perspectives of developing novel stretchable transparent conductors and device configurations with tailored features are also considered.  相似文献   

8.
Biomolecules, especially proteins and nucleic acids, have been widely studied to develop biochips for various applications in scientific fields ranging from bioelectronics to stem cell research. However, restrictions exist due to the inherent characteristics of biomolecules, such as instability and the constraint of granting the functionality to the biochip. Introduction of functional nanomaterials, recently being researched and developed, to biomolecules have been widely researched to develop the nanobiohybrid materials because such materials have the potential to enhance and extend the function of biomolecules on a biochip. The potential for applying nanobiohybrid materials is especially high in the field of bioelectronics. Research in bioelectronics is aimed at realizing electronic functions using the inherent properties of biomolecules. To achieve this, various biomolecules possessing unique properties have been combined with novel nanomaterials to develop bioelectronic devices such as highly sensitive electrochemical‐based bioelectronic sensing platforms, logic gates, and biocomputing systems. In this review, recently reported bioelectronic devices based on nanobiohybrid materials are discussed. The authors believe that this review will suggest innovative and creative directions to develop the next generation of multifunctional bioelectronic devices.  相似文献   

9.
We report on the direct electrical interfacing of a recombinant ion channel to a field-effect transistor on a silicon chip. The ion current through activated maxi-K(Ca) channels in human embryonic kidney (HEK293) cells gives rise to an extracellular voltage between cell and chip that controls the electronic source-drain current. A comparison with patch-clamp recording shows that the channels at the cell/chip interface are fully functional and that they are significantly accumulated there. The direct coupling of potassium channels to a semiconductor on the level of an individual cell is the prototype for an iono-electronic interface of ligand-gated or G protein-coupled ion channels and the development of screening biosensors with many transfected cells on a chip with a large array of transistors.  相似文献   

10.
Short, self-assembling peptides form a variety of stable nanostructures used for the rational design of functional devices. Peptides serve as organic templates for conjugating biorecognition elements, and assembling ordered nanoparticle arrays and hybrid supramolecular structures. We are witnessing the emergence of a new phase of bionanotechnology, particularly towards electronic, photonic and plasmonic applications. Recent advances include self-assembly of photoluminescent semiconducting nanowires and peptide-conjugated systems for sensing, catalysis and energy storage. Concurrently, methods and tools have been developed to control and manipulate the self-assembled nanostructures. Furthermore, there is growing knowledge on nanostructure properties such as piezoelectricity, dipolar electric field and stability. This review focuses on the emerging role of short, linear self-assembling peptides as simple and versatile building blocks for nanodevices.  相似文献   

11.
通过视觉获取图像信息是人类学习和生活的重要功能,失明则会显著降低其生活质量.因视网膜色素变性、青光眼和黄斑变性等疾病而造成后天失明者,以及由意外事故、战争等造成眼部创伤者,有可能通过人工视觉辅助系统的帮助恢复部分视觉,或者完成复杂的生活任务.一些盲症患者视觉通路的神经传导剩余部分依然有功能,因此可以借助电极阵列刺激视神经向大脑传递视觉信息,也可在大脑视觉皮层贴敷电极阵列的方法输入视觉信息.此外,还能借助体外装置,如通过人工智能将视觉转换成语音指令、触觉阵列编码等,帮助盲症患者获得环境信息.本文综述各类人工视觉辅助系统的现状,展望其发展趋势,并提出了新的植入器件与随身体外装置的新设想.  相似文献   

12.
Biotechnological synthesis of functional nanomaterials   总被引:1,自引:0,他引:1  
Biological systems, especially those using microorganisms, have the potential to offer cheap, scalable and highly tunable green synthetic routes for the production of the latest generation of nanomaterials. Recent advances in the biotechnological synthesis of functional nano-scale materials are described. These nanomaterials range from catalysts to novel inorganic antimicrobials, nanomagnets, remediation agents and quantum dots for electronic and optical devices. Where possible, the roles of key biological macromolecules in controlling production of the nanomaterials are highlighted, and also technological limitations that must be addressed for widespread implementation are discussed.  相似文献   

13.
Chip devices were introduced in chemistry and molecular biology to improve the read-out of information from molecular systems by efficient analytical procedures and to organize automated experiments. Biochips and chip reactor systems are of interest for cellular processes, too, and can be regarded as components in interfaces for the information exchange between living nature and digital electronic systems. In this minireview, different types of chip reactors for biotechnological applications like nanotiterplates, chip thermocyclers and devices for segmented flow operations are discussed. Finally, an outlook is given on the application of chip reactor systems, which are promising tools for automated experiments with highly parallelized screening procedures, for artificial microcompartmentation, cell analogue systems, micro-ecological studies, investigations on modulated morphogenesis, and for a bioanalogue molecular nanotechnology.  相似文献   

14.
We analyzed cyclic enzyme systems, one of the best candidates for biochemical switching devices, especially focusing on their control mode against external perturbations. Since these systems have the reliability of ON-OFF types of operation (McCulloch-Pitts' neuronic equation), we shall present here the mechanical difference between these systems and electronic switching circuit, especially on the mnemonic mechanism of biochemical switching devices.  相似文献   

15.
16.
The development of energy storage devices with higher energy and power outputs, and long cycling stability is urgently required in the pursuit of the expanding challenges of electrical energy storage. The utilization of biologically renewable redox compounds holds a great potential in designing sustainable energy storage systems and contributes in reducing the dependence on fossil fuels for energy materials. Quinones are the principal redox centers in natural organic materials and play a key role as charge storage electrode materials because of their abundance, multiple forms and integration into the materials flow through the biosphere. Electrical energy storage devices and systems can be significantly improved by the combination of scalable quinone‐based biomaterials with good electronic conductors. This review uses recent examples to show how biopolymers are providing new directions in the development of renewable biohybrid electrodes for energy storage devices.  相似文献   

17.
Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex vivo devices such as electronic biosensors, thin-film protein arrays, or biofuel cells. Given that most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In this work, we explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified the vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes.  相似文献   

18.
Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex vivo devices such as electronic biosensors, thin-film protein arrays, or biofuel cells. Given that most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In this work, we explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified the vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes.  相似文献   

19.
Nanowire-based detection strategies provide promising new routes to bioanalysis that could one day revolutionize the healthcare industry. This review covers recent developments in nanowire sensors for multiplexed detection of biomolecules such as nucleic acids and proteins. We focus on encoded nanowire suspension arrays and semiconductor nanowire-based field-effect transistors. Nanowire assembly and integration with microchip technology is emphasized as a key step toward the ultimate goal of multiplexed detection at the point of care using portable, low power, electronic biosensor chips.  相似文献   

20.
This paper presents a review of acoustic-wave based MEMS devices that offer a promising technology platform for the development of sensitive, portable, real-time biosensors. MEMS fabrication of acoustic wave based biosensors enables device miniaturization, power consumption reduction and integration with electronic circuits. For biological applications, the biosensors are integrated in a microfluidic system and the sensing area is coated with a biospecific layer. When a bioanalyte interacts with the sensing layer, mass and viscosity variations of the biospecific layer can be detected by monitoring changes in the acoustic wave properties such as velocity, attenuation, resonant frequency and delay time. Few types of acoustic wave devices could be integrated in microfluidic systems without significant degradation of the quality factor. The acoustic wave based MEMS devices reported in the literature as biosensors and presented in this review are film bulk acoustic wave resonators (FBAR), surface acoustic waves (SAW) resonators and SAW delay lines. Different approaches to the realization of FBARs, SAW resonators and SAW delay lines for various biochemical applications are presented. Methods of integration of the acoustic wave MEMS devices in the microfluidic systems and functionalization strategies will be also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号