首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
《Epigenetics》2013,8(3):261-269
Lung function is a strong predictor of mortality. While inflammatory markers have been associated with lung function decrease, pathways are still poorly understood and epigenetic changes may participate in lung function decline mechanisms. We studied the cross-sectional association between DNA methylation in nine inflammatory genes and lung function in a cohort of 756 elderly men living in the metropolitan area of Boston. Participants donated a blood sample for DNA methylation analysis and underwent spirometry at each visit every 3 to 5 y from 1999–2006. We used separate multivariate mixed effects regression models to study the association between each lung function measurement and DNA methylation within each gene. Decreased CRAT, F3 and TLR2 methylation was significantly associated with lower lung function. One interquartile range (IQR) decrease in DNA methylation was associated with lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV1), respectively by 2.94% (p < 10?4) and 2.47% (p < 10?3) for F3, and by 2.10% (p < 10?2) and 2.42% (p < 10?3) for TLR2. Decreased IFNγ and IL6 methylation was significantly associated with better lung function. One IQR decrease in DNA methylation was associated with higher FEV1 by 1.75% (p = 0.02) and 1.67% (p = 0.05) for IFNγ and IL6, respectively. These data demonstrate that DNA methylation may be part of the biological processes underlying the lung function decline and that IFNγ and IL6 may have ambivalent roles through activation of negative feedback.  相似文献   

2.
3.
《Epigenetics》2013,8(5):566-572
Birthweight has been associated with a number of health outcomes throughout life. Crucial to proper infant growth and development is the placenta, and alterations to placental gene function may reflect differences in the intrauterine environment which functionally contribute to infant growth and may ultimately affect the child’s health. To examine if epigenetic alteration to the glucocorticoid receptor (GR) gene was linked to infant growth, we analyzed 480 human placentas for differential methylation of the GR gene exon 1F and examined how this variation in methylation extent was associated with fetal growth. Multivariable linear regression revealed a significant association (p &lt; 0.0001) between differential methylation of the GR gene and large for gestational age (LGA) status. Our work is one of the first to link infant growth as a measure of the intrauterine environment and epigenetic alterations to the GR and suggests that DNA methylation may be a critical determinant of placental function.  相似文献   

4.
Birthweight has been associated with a number of health outcomes throughout life. Crucial to proper infant growth and development is the placenta, and alterations to placental gene function may reflect differences in the intrauterine environment which functionally contribute to infant growth and may ultimately affect the child''s health. To examine if epigenetic alteration to the glucocorticoid receptor (GR) gene was linked to infant growth, we analyzed 480 human placentas for differential methylation of the GR gene exon 1F and examined how this variation in methylation extent was associated with fetal growth. Multivariable linear regression revealed a significant association (p < 0.0001) between differential methylation of the GR gene and large for gestational age (LGA) status. Our work is one of the first to link infant growth as a measure of the intrauterine environment and epigenetic alterations to the GR and suggests that DNA methylation may be a critical determinant of placental function.Key words: DNA methylation, placenta, fetal development, birthweight, epigenetics  相似文献   

5.
《Epigenetics》2013,8(3):222-228
BACKGROUND: Lower blood DNA methylation has been associated with atherosclerosis and high cardiovascular risk. Mechanisms linking DNA hypomethylation to increased cardiovascular risk are still largely unknown. In a population of community-dwelling elderly individuals, we evaluated whether DNA methylation in LINE-1 repetitive element, heavily methylated sequences dispersed throughout the human genome, was associated with circulating Vascular Cell Adhesion Molecule-1 (VCAM-1), Inter- Cellular Adhesion Molecule-1 (ICAM-1), and C-reactive protein (CRP). METHODS AND RESULTS: We measured LINE-1 methylation by bisulfite PCR-Pyrosequencing on 742 blood DNA samples from male participants in the Boston area Normative Aging Study (mean age=74.8 years). Mean serum VCAM-1 increased progressively in association with LINE-1 hypomethylation (from 975.2 to 1063.4 ng/ml in the highest vs. lowest methylation quintiles; ptrend= 0.004). The association between VCAM-1 and LINE-1 hypomethylation was significant in individuals without ischemic heart disease or stroke (n=480; p=0.001), but not in those with prevalent disease (n=262; p=0.57). Serum ICAM-1 and CRP were not associated with LINE-1 methylation (p-trend=>0.25). All results were confirmed by multivariable analyses adjusting for age, BMI, smoking, pack-years, and ischemic heart disease/stroke. CONCLUSIONS: LINE-1 element hypomethylation is associated with higher serum VCAM-1. Our data provide new insights into epigenetic events that may accompany the development of cardiovascular disease.  相似文献   

6.

Background

There is a need for new, noninvasive risk assessment tools for use in lung cancer population screening and prevention programs.

Methods

To investigate the technical feasibility of determining DNA methylation in exhaled breath condensate, we applied our previously-developed method for tag-adapted bisulfite genomic DNA sequencing (tBGS) for mapping of DNA methylation, and adapted it to exhaled breath condensate (EBC) from lung cancer cases and non-cancer controls. Promoter methylation patterns were analyzed in DAPK, RASSF1A and PAX5β promoters in EBC samples from 54 individuals, comprised of 37 controls [current- (n = 19), former- (n = 10), and never-smokers (n = 8)] and 17 lung cancer cases [current- (n = 5), former- (n = 11), and never-smokers (n = 1)].

Results

We found: (1) Wide inter-individual variability in methylation density and spatial distribution for DAPK, PAX5β and RASSF1A. (2) Methylation patterns from paired exhaled breath condensate and mouth rinse specimens were completely divergent. (3) For smoking status, the methylation density of RASSF1A was statistically different (p = 0.0285); pair-wise comparisons showed that the former smokers had higher methylation density versus never smokers and current smokers (p = 0.019 and p = 0.031). For DAPK and PAX5β, there was no such significant smoking-related difference. Underlying lung disease did not impact on methylation density for this geneset. (4) In case-control comparisons, CpG at -63 of DAPK promoter and +52 of PAX5β promoter were significantly associated with lung cancer status (p = 0.0042 and 0.0093, respectively). After adjusting for multiple testing, both loci were of borderline significance (padj = 0.054 and 0.031). (5) The DAPK gene had a regional methylation pattern with two blocks (1)~-215~-113 and (2) -84 ~+26); while similar in block 1, there was a significant case-control difference in methylation density in block 2 (p = 0.045); (6)Tumor stage and histology did not impact on the methylation density among the cases. (7) The results of qMSP applied to EBC correlated with the corresponding tBGS sequencing map loci.

Conclusion

Our results show that DNA methylation in exhaled breath condensate is detectable and is likely of lung origin. Suggestive correlations with smoking and lung cancer case-control status depend on individual gene and CpG site examined.  相似文献   

7.
In utero smoke exposure has been shown to have detrimental effects on lung function and to be associated with persistent wheezing and asthma in children. One potential mechanism of IUS effects could be alterations in DNA methylation, which may have life-long implications. The goal of this study was to examine the association between DNA methylation and nicotine exposure in fetal lung and placental tissue in early development; nicotine exposure in this analysis represents a likely surrogate for in-utero smoke. We performed an epigenome-wide analysis of DNA methylation in fetal lung tissue (n = 85, 41 smoke exposed (48%), 44 controls) and the corresponding placental tissue samples (n = 80, 39 smoke exposed (49%), 41 controls) using the Illumina HumanMethylation450 BeadChip array. Differential methylation analyses were conducted to evaluate the variation associated with nicotine exposure. The most significant CpG sites in the fetal lung analysis mapped to the PKP3 (P = 2.94 × 10−03), ANKRD33B (P = 3.12 × 10−03), CNTD2 (P = 4.9 × 10−03) and DPP10 (P = 5.43 × 10−03) genes. In the placental methylome, the most significant CpG sites mapped to the GTF2H2C and GTF2H2D genes (P = 2.87 × 10−06 − 3.48 × 10−05). One hundred and one unique CpG sites with P-values < 0.05 were concordant between lung and placental tissue analyses. Gene Set Enrichment Analysis demonstrated enrichment of specific disorders, such as asthma and immune disorders. Our findings demonstrate an association between in utero nicotine exposure and variable DNA methylation in fetal lung and placental tissues, suggesting a role for DNA methylation variation in the fetal origins of chronic diseases.  相似文献   

8.
《Epigenetics》2013,8(11):1473-1484
In utero smoke exposure has been shown to have detrimental effects on lung function and to be associated with persistent wheezing and asthma in children. One potential mechanism of IUS effects could be alterations in DNA methylation, which may have life-long implications. The goal of this study was to examine the association between DNA methylation and nicotine exposure in fetal lung and placental tissue in early development; nicotine exposure in this analysis represents a likely surrogate for in-utero smoke. We performed an epigenome-wide analysis of DNA methylation in fetal lung tissue (n = 85, 41 smoke exposed (48%), 44 controls) and the corresponding placental tissue samples (n = 80, 39 smoke exposed (49%), 41 controls) using the Illumina HumanMethylation450 BeadChip array. Differential methylation analyses were conducted to evaluate the variation associated with nicotine exposure. The most significant CpG sites in the fetal lung analysis mapped to the PKP3 (P = 2.94 × 10?03), ANKRD33B (P = 3.12 × 10?03), CNTD2 (P = 4.9 × 10?03) and DPP10 (P = 5.43 × 10?03) genes. In the placental methylome, the most significant CpG sites mapped to the GTF2H2C and GTF2H2D genes (P = 2.87 × 10?06 ? 3.48 × 10?05). One hundred and one unique CpG sites with P-values < 0.05 were concordant between lung and placental tissue analyses. Gene Set Enrichment Analysis demonstrated enrichment of specific disorders, such as asthma and immune disorders. Our findings demonstrate an association between in utero nicotine exposure and variable DNA methylation in fetal lung and placental tissues, suggesting a role for DNA methylation variation in the fetal origins of chronic diseases.  相似文献   

9.
10.

Rationale

Adipose tissue produces adiponectin, an anti-inflammatory protein. Adiponectin deficiency in mice is associated with abnormal post-natal alveolar development.

Objective

We hypothesized that lower serum adiponectin concentrations are associated with lower lung function in humans, independent of obesity. We explored mediation of this association by insulin resistance and systemic inflammation.

Methods and Measurements

Spirometry testing was conducted at years 10 and 20 follow-up evaluation visits in 2,056 eligible young adult participants in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Body mass index, serum adiponectin, serum C-reactive protein (a marker of systemic inflammation), and insulin resistance were assessed at year 15.

Main Results

After controlling for body mass index, years 10 and 20 forced vital capacity (FVC) were 81 ml and 82 ml lower respectively (p = 0.004 and 0.01 respectively) in the lowest vs. highest adiponectin quartiles. Similarly, years 10 and 20 forced expiratory volume in one second (FEV1) were 50 ml and 38 ml lower (p = 0.01 and 0.09, respectively) in the lowest vs. highest adiponectin quartiles. These associations were no longer significant after adjustment for insulin resistance and C-reactive protein. Serum adiponectin was not associated with FEV1/FVC or peak FEV1.

Conclusions

Independent of obesity, lower serum adiponectin concentrations are associated with lower lung function. The attenuation of this association after adjustment for insulin resistance and systemic inflammation suggests that these covariates are on a causal pathway linking adiponectin and lung function.  相似文献   

11.
《Epigenetics》2013,8(8):1101-1107
Many genetic studies report mixed results both for the associations between COMT polymorphisms and schizophrenia and for the effects of COMT variants on common intermediate phenotypes of the disorder. Reasons for this may include small genetic effect sizes and the modulation of environmental influences. To improve our understanding of the role of COMT in the disease etiology, we investigated the effect of DNA methylation in the MB-COMT promoter on neural activity in the dorsolateral prefrontal cortex during working memory processing as measured by fMRI - an intermediate phenotype for schizophrenia. Imaging and epigenetic data were measured in 102 healthy controls and 82 schizophrenia patients of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia. Neural activity during the Sternberg Item Recognition Paradigm was acquired with either a 3T Siemens Trio or 1.5T Siemens Sonata and analyzed using the FMRIB Software Library (FSL). DNA methylation measurements were derived from cryo-conserved blood samples. We found a positive association between MB-COMT promoter methylation and neural activity in the left dorsolateral prefrontal cortex in a model using a region-of-interest approach and could confirm this finding in a whole-brain model. This effect was independent of disease status. Analyzing the effect of MB-COMT promoter DNA methylation on a neuroimaging phenotype can provide further evidence for the importance of COMT and epigenetic risk mechanisms in schizophrenia. The latter may represent trans-regulatory or environmental risk factors that can be measured using brain-based intermediate phenotypes.  相似文献   

12.
Many genetic studies report mixed results both for the associations between COMT polymorphisms and schizophrenia and for the effects of COMT variants on common intermediate phenotypes of the disorder. Reasons for this may include small genetic effect sizes and the modulation of environmental influences. To improve our understanding of the role of COMT in the disease etiology, we investigated the effect of DNA methylation in the MB-COMT promoter on neural activity in the dorsolateral prefrontal cortex during working memory processing as measured by fMRI - an intermediate phenotype for schizophrenia. Imaging and epigenetic data were measured in 102 healthy controls and 82 schizophrenia patients of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia. Neural activity during the Sternberg Item Recognition Paradigm was acquired with either a 3T Siemens Trio or 1.5T Siemens Sonata and analyzed using the FMRIB Software Library (FSL). DNA methylation measurements were derived from cryo-conserved blood samples. We found a positive association between MB-COMT promoter methylation and neural activity in the left dorsolateral prefrontal cortex in a model using a region-of-interest approach and could confirm this finding in a whole-brain model. This effect was independent of disease status. Analyzing the effect of MB-COMT promoter DNA methylation on a neuroimaging phenotype can provide further evidence for the importance of COMT and epigenetic risk mechanisms in schizophrenia. The latter may represent trans-regulatory or environmental risk factors that can be measured using brain-based intermediate phenotypes.  相似文献   

13.

Background

Reduced forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) are strong predictors of mortality and lung function is higher among individuals with exceptional longevity. However, genetic factors associated with lung function in individuals with exceptional longevity have not been identified.

Method

We conducted a genome wide association study (GWAS) to identify novel genetic variants associated with lung function in the Long Life Family Study (LLFS) (n = 3,899). Replication was performed using data from the CHARGE/SpiroMeta consortia. The association between SNPs and FEV1 and FEV1/FVC was analyzed using a linear mixed effects model adjusted for age, age2, sex, height, field center, ancestry principal components and kinship structure to adjust for family relationships separately for ever smokers and never smokers. In the linkage analysis, we used the residuals of the FEV1 and FEV1/FVC, adjusted for age, sex, height, ancestry principal components (PCs), smoking status, pack-years, and field center.

Results

We identified nine SNPs in strong linkage disequilibrium in the CYP2U1 gene to be associated with FEV1 and a novel SNP (rs889574) associated with FEV1/FVC, none of which were replicated in the CHARGE/SpiroMeta consortia. Using linkage analysis, we identified a novel linkage peak in chromosome 2 at 219 cM for FEV1/FVC (LOD: 3.29) and confirmed a previously reported linkage peak in chromosome 6 at 28 cM (LOD: 3.33) for FEV1.

Conclusion

Future studies need to identify the rare genetic variants underlying the linkage peak in chromosome 6 for FEV1.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0134-x) contains supplementary material, which is available to authorized users.  相似文献   

14.
The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.  相似文献   

15.

Background

Nosocomial infections are extremely common in the elderly and may be related to ageing of the immune system. The Immune Risk Phenotype (IRP), which predicts shorter survival in elderly patients, has not been evaluated as a possible risk factor for nosocomial infection. Our aim was to assess the prevalence of nosocomial infections in elderly in-patients and to investigate potential relationships between nosocomial infections and the immunophenotype, including IRP parameters.

Results

We included 252 consecutive in-patients aged 70 years or over (mean age, 85 ± 6.2 years), between 2006 and 2008. Among them, 97 experienced nosocomial infections, yielding a prevalence rate of 38.5% (95% confidence interval, 32.5-44.5). The main infection sites were the respiratory tract (21%) and urinary tract (17.1%) When we compared immunological parameters including cell counts determined by flow cytometry in the groups with and without nosocomial infections, we found that the group with nosocomial infections had significantly lower values for the CD4/CD8 ratio and naive CD8 and CD4 T-cell counts and higher counts of memory CD8 T-cells with a significant increase in CD28-negative CD8-T cells. Neither cytomegalovirus status (positive in 193/246 patients) nor presence of the IRP was associated with nosocomial infections. However, nosocomial pneumonia was significantly more common among IRP-positive patients than IRP-negative patients (17/60 versus 28/180; p = 0.036).

Conclusion

Immunological parameters that are easy to determine in everyday practice and known to be associated with immune system ageing and shorter survival in the elderly are also associated with an elevated risk of nosocomial pneumonia in the relatively short term.  相似文献   

16.
Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4) have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ), and even low grade gliomas (LGGs, WHO grade 2) eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6)-methylguanine-DNA methyltransferase (MGMT) that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP) in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1) IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2) LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3) LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4) higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.  相似文献   

17.
18.
19.
Wu W  Shen O  Qin Y  Niu X  Lu C  Xia Y  Song L  Wang S  Wang X 《PloS one》2010,5(11):e13884

Background

Abnormal germline DNA methylation in males has been proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. Previous studies have been focused on imprinted genes with DNA methylation in poor quality human sperms. However, recent but limited data have revealed that sperm methylation abnormalities may involve large numbers of genes or shown that genes that are not imprinted are also affected.

Methodology/Principal Findings

Using the methylation-specific polymerase chain reaction and bisulfite sequencing method, we examined methylation patterns of the promoter of methylenetetrahydrofolate reductase (MTHFR) gene (NG_013351: 1538–1719) in sperm DNA obtained from 94 idiopathic infertile men and 54 normal fertile controls. Subjects with idiopathic infertility were further divided into groups of normozoospermia and oligozoospermia. Overall, 45% (41/94) of idiopathic infertile males had MTHFR hypermethylation (both hemimethylation and full methylation), compared with 15% of fertile controls (P<0.05). Subjects with higher methylation level of MTHFR were more likely to have idiopathic male infertility (P-value for trend  = 0.0007). Comparing the two groups of idiopathic infertile subjects with different sperm concentrations, a higher methylation pattern was found in the group with oligozoospermia.

Conclusions

Hypermethylation of the promoter of MTHFR gene in sperms is associated with idiopathic male infertility. The functional relevance of hypermathylation of MTHFR to male fertility warrants further investigation.  相似文献   

20.
Enhanced phospholipid methylation has been suggested to be an obligatory process in IgE-dependent stimulus-secretion coupling in human lung mast cells. Our studies with mast cell-enriched lung preparations do not support this hypothesis, demonstrating no increased 3H-methyl radiolabeling of chloroform/methanol-extracted lipids or chromatographically separated phospholipids accompanying anti-IgE-dependent histamine secretion. Inhibitors of transmethylation, 3-deazaadenosine, and homocysteine thiolactone inhibited histamine secretion by both anti-IgE and calcium ionophore A23187, reflecting a requirement of secretion for overall integrity of cellular transmethylation. These agents induced small increases in cAMP concentration which are considered to make at most a minor contribution to this inhibition. The inability of methylation inhibitors to diminish anti-IgE-dependent increases in lung mast cell cAMP levels would suggest that not only does phospholipid methylation have no role in histamine secretion but also it does not participate in the activation of adenylate cyclase by this stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号