首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
In vertebrates, most inner organs are asymmetrically arranged with respect to the main body axis [1]. Symmetry breakage in fish, amphibian, and mammalian embryos depends on cilia-driven leftward flow of extracellular fluid during neurulation [2-5]. Flow induces the asymmetric nodal cascade that governs asymmetric organ morphogenesis and placement [1, 6, 7]. In the frog Xenopus, an alternative laterality-generating mechanism involving asymmetric localization of serotonin at the 32-cell stage has been proposed [8]. However, no functional linkage between this early localization and flow at neurula stage has emerged. Here, we report that serotonin signaling is required for specification of the superficial mesoderm (SM), which gives rise to the ciliated gastrocoel roof plate (GRP) where flow occurs [5, 9]. Flow and asymmetry were lost in embryos in which serotonin signaling was downregulated. Serotonin, which we found uniformly distributed along the main body axes in the early embryo, was required for Wnt signaling, which provides the instructive signal to specify the GRP. Importantly, serotonin was required for Wnt-induced double-axis formation as well. Our data confirm flow as primary mechanism of symmetry breakage and suggest a general role of serotonin as competence factor for Wnt signaling during axis formation in Xenopus.  相似文献   

3.
4.
In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this 'proto-brain'. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous.  相似文献   

5.
6.
The leftward flow in extraembryonic fluid is critical for the initial determination of the left-right axis of mouse embryos. It is unclear if this is a conserved mechanism among other vertebrates and how the directionality of the flow arises from the motion of cilia. In this paper, we show that rabbit and medakafish embryos also exhibit a leftward fluid flow in their ventral nodes. In all cases, primary monocilia present a clockwise rotational-like motion. Observations of defective ciliary dynamics in mutant mouse embryos support the idea that the posterior tilt of the cilia during rotational-like beating can explain the leftward fluid flow. Moreover, we show that this leftward flow may produce asymmetric distribution of exogenously introduced proteins, suggesting morphogen gradients as a subsequent mechanism of left-right axis determination. Finally, we experimentally and theoretically characterize under which conditions a morphogen gradient can arise from the flow.  相似文献   

7.

Background

Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet.

Results

Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos.

Conclusions

Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.
  相似文献   

8.
Asymmetric development of the vertebrate embryo has fascinated embryologists for over a century. Much has been learned since the asymmetric Nodal signaling cascade in the left lateral plate mesoderm was detected, and began to be unraveled over the past decade or two. When and how symmetry is initially broken, however, has remained a matter of debate. Two essentially mutually exclusive models prevail. Cilia-driven leftward flow of extracellular fluids occurs in mammalian, fish and amphibian embryos. A great deal of experimental evidence indicates that this flow is indeed required for symmetry breaking. An alternative model has argued, however, that flow simply acts as an amplification step for early asymmetric cues generated by ion flux during the first cleavage divisions. In this review we critically evaluate the experimental basis of both models. Although a number of open questions persist, the available evidence is best compatible with flow-based symmetry breakage as the archetypical mode of symmetry breakage.  相似文献   

9.
10.
Huntington's disease is a progressive neuro-degenerative disorder in humans, which is scharacterized by onset of dementia, muscular ataxia, and death. Huntington's disease is caused by the expansion of the polyglutamine (polyQ) tract in the N-terminus of the HD protein (Huntingtin). CAG expansion is a dominant gain of function mutation that affects striated neurons in the brain (Cattaneo, 2003, News Physiol Sci 18:34). The evolutionary origins of the vertebrate Hd gene are not well understood. In order to address the evolutionary history of the Hd gene, we have cloned and characterized the expression of the Hd gene in two invertebrate deuterostomes, an echinoderm and an ascidian, and have examined the expression patterns in a phylogenetic context. Echinoderms are basal deuterostomes and ascidians are basal chordates; both are useful for understanding the origins of and evolutionary trends in genes important in vertebrates such as the Huntigton's disease gene. Expression of Hd RNA is detected at all stages of development in both the echinoderm and ascidian studied. In the echinoderm Heliocidaris erythrogramma, Hd is expressed in coelomic mesodermal tissue derivatives, but not in the central nervous system. In the ascidian Halocynthia roretzi expression is located in both mesoderm and nervous tissue. We suggest that the primitive deuterostome expression pattern is not neural. Thus, neural expression of the Hd gene in deuterostomes may be a novel feature of the chordate lineage, and the original role(s) of HD in deuterostomes may have been non-neural.  相似文献   

11.
Specification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2 in the node. Defects in cilia and/or fluid flow in the node lead to defective Nodal and Cerl2 expression and therefore incorrect visceral organ situs. Here we show the cilia protein Arl13b is required for left right axis specification as its absence results in heterotaxia. We find the defect originates in the node where Cerl2 is not downregulated and asymmetric expression of Nodal is not maintained resulting in symmetric expression of both genes. Subsequently, Nodal expression is delayed in the lateral plate mesoderm (LPM). Symmetric Nodal and Cerl2 in the node could result from defects in either the generation and/ or the detection of Nodal flow, which would account for the subsequent defects in the LPM and organ positioning.  相似文献   

12.
The twist gene is known to be involved in mesoderm formation in two of the three clades of bilaterally symmetrical animals: viz. deuterostomes (such as vertebrates) and ecdysozoans (such as arthropods and nematodes). There are currently no data on the spatiotemporal expression of this gene in the third clade, the lophotrochozoans (such as mollusks and annelids). To approach the question of mesoderm homology across bilaterians, we decided to analyze orthologs of this gene in the gastropod mollusk Patella vulgata that belongs to the lophotrochozoans. We present here the cloning, characterization, and phylogenetic analysis of a Patella twist ortholog, Pv-twi, and determine the early spatiotemporal expression pattern of this gene. Pv-twi expression was found in the trochophore larva in a subset of the ectomesoderm, one of the two sources of mesoderm in Patella. These data support the idea that twist genes were ancestrally involved in mesoderm differentiation. The absence of Pv-twi in the second mesodermal source, the endomesoderm, suggests that also other genes must be involved in lophotrochozoan mesoderm differentiation. It therefore remains a question if the mesoderm of all bilaterians is homologous.  相似文献   

13.
The vertebrate body plan features a consistent left-right (LR) asymmetry of internal organs. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that is necessary for normal LR development. However, the mechanisms involved in orienting LR asymmetric flow with previously established anteroposterior (AP) and dorsoventral (DV) axes remain poorly understood. In zebrafish, asymmetric flow is generated in Kupffer's vesicle (KV). The cellular architecture of KV is asymmetric along the AP axis, with more ciliated cells densely packed into the anterior region. Here, we identify a Rho kinase gene, rock2b, which is required for normal AP patterning of KV and subsequent LR development in the embryo. Antisense depletion of rock2b in the whole embryo or specifically in the KV cell lineage perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ LR asymmetries. Analyses of KV architecture demonstrated that rock2b knockdown altered the AP placement of ciliated cells without affecting cilia number or length. In control embryos, leftward flow across the anterior pole of KV was stronger than rightward flow at the posterior end, correlating with the normal AP asymmetric distribution of ciliated cells. By contrast, rock2b knockdown embryos with AP patterning defects in KV exhibited randomized flow direction and equal flow velocities in the anterior and posterior regions. Live imaging of Tg(dusp6:memGFP)(pt19) transgenic embryos that express GFP in KV cells revealed that rock2b regulates KV cell morphology. Our results suggest a link between AP patterning of the ciliated Kupffer's vesicle and LR patterning of the zebrafish embryo.  相似文献   

14.
A.O. Kowalevsky was the first to examine in 1865–1867 the groups related to ancestors of vertebrates. They were represented by lancelet (Branchiostoma) and tunicates (Ascidia). As Grobben (1908) divided metazoans which are more advanced than coelenterates into protostomes and deuterostomes, searching for remote relatives of vertebrates was performed among deuterostomes. For a long time, enteropneusts were considered to be probable ancestors of vertebrates and chordates as a whole. Subsequently, this concept was replaced by the hypothesis that chordates evolved from aberrant deuterostomes with a calcitic skeleton, which were named Stylophora or Calcichordata (Jeffries, 1986). Based on the data on the homeobox genes, Malakhov (2006) proposed that chordates could have acquired characters of deuterostomes independently of echinoderms. A separate position is occupied by the theory of Sepp (1959), who proposed that vertebrates appeared as a result of “duplication” of marine annelids. The most primitive living vertebrates, Cyclostomata, have a hypophysis which is enclosed in an unusually long canal under the brain and opens in an aperture just anterior to the brain. Cyclostomata, along with Paleozoic armored fishlike forms, compose the most primitive vertebrate group, Agnatha.  相似文献   

15.
Nodal cilia dynamics is a key factor for left/right axis determination in mouse embryos through the induction of a leftward fluid flow. So far it has not been clearly established how such dynamics is able to induce the asymmetric leftward flow within the node. Herein we propose that an asymmetric two-phase nonplanar beating cilia dynamics that involves the bending of the ciliar axoneme is responsible for the leftward fluid flow. We support our proposal with a host of hydrodynamic arguments, in silico experiments and in vivo video microscopy data in wild-type embryos and inv mutants. Our phenomenological modeling approach underscores how the asymmetry and speed of the flow depends on different relevant parameters. In addition, we discuss how the combination of internal and external mechanisms might cause the two-phase beating cilia dynamics.  相似文献   

16.
The asymmetric positioning of internal organs on the left or right side of the body is highly conserved in vertebrates and relies on a Nodal signaling pathway acting on the left side of the embryo. Whether the same pathway also regulates left-right asymmetry in invertebrates and what is the evolutionary origin of the mechanisms controlling left-right determination are not known. Here, we show that nodal regulates left-right asymmetry in the sea urchin but that, intriguingly, its expression is reversed compared to vertebrates. Nodal signals emitted from the right side of the larva prevent the right coelomic pouch from forming the imaginal rudiment. Inhibition of Nodal signaling after gastrulation causes formation of an ectopic rudiment on the right side, leading to twinned urchins after metamorphosis. In contrast, ectopic activation of the pathway prevents formation of the rudiment. Our results show that the mechanisms responsible for left-right determination are conserved within basal deuterostomes.  相似文献   

17.
18.
Snail genes have been found to play a role in mesoderm formation in two of the three clades of bilaterians, deuterostomes (comprising the chordates) and ecdysozoans (comprising the arthropods). No clear data are available on the role these genes play in development of the mesoderm in the third clade, that of lophotrochozoans (comprising annelids and molluscs). We identified two new members of the snail gene family in the gastropod mollusc Patella vulgata. Phylogenetic analysis showed that the two genes clearly belong to the snail sub-family. Their expression patterns do not indicate a role during early mesoderm formation. In fact, contrary to expectations, the snail genes of Patella were mostly expressed in the ectoderm. In view of the location of their expression sites, we suggest that these genes could be involved in regulating epithelial-mesenchymal transitions (EMT) and cell motility, as has recently been demonstrated for snail genes in vertebrates. This may well correspond to the ancestral function of these genes. The results are discussed in the light of the evolutionary origin of the mesoderm. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00427-002-0228-1.  相似文献   

19.
During individual development of vertebrates, the anteroposterior, dorsoventral, and left-right axes of the body are established. Although the vertebrates are bilaterally symmetric outside, their internal structure is asymmetric. Of special interest is the insight into establishment of visceral left-right asymmetry in mammals, since it has not only basic but also an applied medical significance. As early as 1976, it was hypothesized that the ciliary action could be associated with the establishment of left-right asymmetry in mammals. Currently, the majority of researchers agree that the ciliary action in the region of Hensen’s node and the resulting leftward laminar fluid flow play a key role in the loss of bilateral symmetry and triggering of expression of the genes constituting the Nodal-Ptx2 signaling cascade, specific of the left side of the embryo. The particular mechanism underlying this phenomenon is still insufficiently clear. There are three competing standpoints on how leftward fluid flow induces expression of several genes in the left side of the embryo. The morphogen gradient hypothesis postulates that the leftward flow creates a high concentration of a signaling biomolecule in the left side of Hensen’s node, which, in turn, stimulates triggering of gene expression of the Nodal-Ptx2 cascade. The biomechanical hypothesis (or two-cilia model) states that the immotile cilia located in the periphery of Hensen’s node act as mechanosensors, activate mechanosensory ion channels, and trigger calcium signaling in the left side of the embryo. Finally, the “shuttle-bus model” holds that left-ward fluid flow carries the lipid vesicles, which are crashed when colliding immotile cilia in the periphery of Hensen’s node to release the contained signaling biomolecules. It is also noteworthy that the association between the ciliary action and establishment of asymmetry has been recently discovered in representatives of the lower invertebrates. In this paper, the author considers evolution of concepts on the mechanisms underlying establishment of visceral left-right asymmetry since 1976 until the present and critically reexamines the current concepts in this field of science. According to the author, serious arguments favoring the biomechanical hypothesis for determination of left-right asymmetry in mammals have been obtained.  相似文献   

20.
The genes governing mesoderm specification have been extensively studied in vertebrates, arthropods and nematodes. The latter two phyla belong to the Ecdysozoan clade but little is understood of the role that these genes might play in the development of the other major protostomal clade, the Lophotrochozoa. As part of a wider project to analyze the functions associated with transforming growth factor beta superfamily members in Lophotrochozoa, we have cloned a gene encoding a tolloid homologue from the bivalve mollusc Crassostrea gigas. Tolloid is a key developmental protein that regulates the activity of bone morphogenetic proteins (BMPs). We have determined the intron-exon structure of the gene encoding C. gigas tolloid and have compared it with those of homologous genes from both protostomes and deuterostomes. In order to analyze the functionality of oyster tolloid the zebrafish embryo has been employed as a reporter organism and we show that over-expression of this protein results in the ventralization of zebrafish embryos at 24h post fertilization. The expression of the C. gigas tolloid gene during embryonic and larval development as well as in adult tissues is also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号