首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Avicennia germinans L. is a widespread mangrove species occupying the west coast of Africa and the Atlantic and Pacific coasts of the Americas from the Bahamas to Brazil and Baja California to Peru. An amplified fragment length polymorphism (AFLP) molecular analysis was carried out to assess genetic architecture within this species and to evaluate the effects of the Atlantic Ocean and the Central American Isthmus (CAI) on population and regional genetic diversity and differentiation. In total, 349 polymorphic AFLP fragments were identified among 144 individuals from 14 populations from the east Atlantic, west Atlantic and east Pacific. Levels of genetic diversity varied considerably among populations, but were generally higher in populations from the east Atlantic. Regional differentiation between the Pacific coast and Atlantic populations was greater than between east and west Atlantic populations, suggesting that the CAI has had an important influence on population genetic structure in this species. The lower level of divergence of east Atlantic from west Atlantic populations suggests some dispersal across the Atlantic Ocean, although migration rates are probably low; Nm from GST equal to 0.41 and accumulation of private and rare alleles in the east Atlantic. Population differentiation did not appear to follow an isolation by distance model and has probably resulted from complex patterns of population bottlenecks, and founder events due to landscape changes during the Pleistocene, particularly in the west Atlantic. The molecular data provide no support for the treatment of east Atlantic populations as a separate species A. africana.  相似文献   

2.
Three separate effects on refuge use by signal crayfish Pacifastacus leniusculus and Atlantic salmon Salmo salar were examined: (1) the effect on Atlantic salmon of an addition of signal crayfish (doubling the total number of animals), (2) the effect on signal crayfish of an addition of Atlantic salmon and (3) intraspecific compared with interspecific competition, compared by holding total density of animals constant and varying the proportion of signal crayfish and Atlantic salmon in trials. Observations were made during winter, when both species are nocturnal. The proportion of Atlantic salmon sheltering was significantly lower in the presence than in the absence of signal crayfish when the interspecific treatment (Atlantic salmon plus signal crayfish) effected a doubling in density compared to the intraspecific treatment (Atlantic salmon alone). The proportion of signal crayfish sheltering was independent of the presence of Atlantic salmon. When total density was constant, the proportion of Atlantic salmon sheltering was significantly higher in intraspecific (52·8%) than interspecific trials (27·3%). Atlantic salmon out of shelter during the day in winter are believed to be very vulnerable to predators and the capacity for fish to share shelters with one another is known to be very low. Therefore, competition from crayfish for winter shelters may lead to detrimental effects on Atlantic salmon populations.  相似文献   

3.
ABSTRACT: BACKGROUND: Geographical isolation has generated a distinct difference between Atlantic salmon of European and North American Atlantic origin. The European Atlantic salmon generally has 29 pairs of chromosomes and 74 chromosome arms whereas it has been reported that the North American Atlantic salmon has 27 chromosome pairs and an NF of 72. In order to predict the major chromosomal rearrangements causing these differences, we constructed a dense linkage map for Atlantic salmon of North American origin and compared it with the well-developed map for European Atlantic salmon. RESULTS: The presented male and female genetic maps for the North American subspecies of Atlantic salmon, contains 3,662 SNPs located on 27 linkage groups. The total lengths of the female and male linkage maps were 2,153 cM and 968 cM respectively, with males characteristically showing recombination only at the telomeres. We compared these maps with recently published SNP maps from European Atlantic salmon, and predicted three chromosomal reorganization events that we then tested using fluorescence in situ hybridization (FISH) analysis. The proposed rearrangements, which define the differences in the karyotypes of the North American Atlantic salmon relative to the European Atlantic salmon, include the translocation of the p arm of ssa01 to ssa23 and polymorphic fusions: ssa26 with ssa28, and ssa08 with ssa29. CONCLUSIONS: This study identified major chromosomal differences between European and North American Atlantic salmon. However, while gross structural differences were significant, the order of genetic markers at the fine-resolution scale was remarkably conserved. This is a good indication that information from the International Cooperation to Sequence the Atlantic salmon Genome, which is sequencing a European Atlantic salmon, can be transferred to Atlantic salmon from North America.  相似文献   

4.
Major temporal changes in the importance of euphausiids and Atlantic herring Clupea harengus in the diet of Atlantic cod Gadus morhua , 10–75 cm L F, occurred in shallow waters (<100 m depths) of the southern Gulf of St Lawrence between 1959 and 2000. Euphausiids represented 6–70% of prey mass for Atlantic cod 31–60 cm L F from 1959 to 1987 but only trace amounts were detected in stomachs collected from 1990 to 2000. Mysids and gammarid amphipods (for Atlantic cod ≤45 cm L F), and Atlantic herring (for Atlantic cod >45 cm L F) largely replaced euphausiids in the Atlantic cod diets from 1990 to 2000. This diet change suggested there has been a major perturbation of the food web of the southern Gulf of St Lawrence. The importance of fishes (mostly Atlantic herring) in the diet of Atlantic cod >45 cm L F increased significantly between the periods 1959–1980 and 1987–2000. Atlantic herring comprised 0–4% (mean 1.3%) of prey mass of Atlantic cod 46–60 cm L F from 1959 to 1980 and increased to 2–42% (mean 19.6%) of the diet from 1987 to 2000. Atlantic herring comprised 0–25% (mean 9.4%) of the prey mass of Atlantic cod 61–75 cm L F from 1959 to 1980 and increased to 42–81% (mean 54.2%) of prey mass from 1987 to 2000. This increased consumption of Atlantic herring was consistent with observed changes in abundance of Atlantic herring in the ecosystem between the late 1970s and 2000. The large changes in consumption of euphausiids and Atlantic herring represent highly significant changes and would need to be included in the development and interpretation of ecosystem-based management models for this ecosystem.  相似文献   

5.
Bigeye (Thunnus obesus) is a large, pelagic, and migratory species of tuna that inhabits tropical and temperate marine waters worldwide. Previous studies based on mitochondrial RFLP data have shown that bigeye tunas from the Atlantic Ocean are the most interesting from a genetic point of view. Two highly divergent mitochondrial haplotype clades (I and II) coexist in the Atlantic Ocean. One is almost exclusive of the Atlantic Ocean whereas the other is also found in the Indo-Pacific Ocean. Bigeye tuna from the Atlantic Ocean is currently managed as a single stock, although this assumption remains untested at the genetic level. Therefore, genetic diversity was determined at the mitochondrial control region to test the null hypothesis of no population structure in bigeye tuna from the Atlantic Ocean. A total of 331 specimens were sampled from four locations in the Atlantic Ocean (Canada, Azores, Canary Islands, and Gulf of Guinea), and one in the Indian and Pacific Oceans, respectively. The reconstructed neighbor-joining phylogeny confirmed the presence of Clades I and II throughout the Atlantic Ocean. No apparent latitudinal gradient of the proportions of both clades in the different collection sites was observed. Hierarchical AMOVA tests and pairwise phi(ST) comparisons involving Atlantic Ocean Clades I and II were consistent with a single stock of bigeye tuna in the Atlantic Ocean. Population genetic analyses considering phylogroups independently supported gene flow within Clade II throughout the Atlantic Ocean, and within Clade I between Atlantic and Indo-Pacific Oceans. The latter result suggests present uni-directional gene flow from the Indo-Pacific into the Atlantic Ocean. Moreover, mismatch analyses dated divergence of Clades I and II during the Pleistocene, as previously proposed. In addition, migration rates were estimated using coalescent methods, and showed a net migration from Atlantic Ocean feeding grounds towards the Gulf of Guinea, the best-known spawning ground of Atlantic bigeye tuna.  相似文献   

6.
Aim To analyse the phylogeographical history of intertidal tardigrades in the North Atlantic in order to improve our understanding of geographical differentiation in microscopic organisms, and to understand the potential importance of the Mid‐Atlantic Islands as stepping stones between the American and European coasts of the Atlantic Ocean. Location Twenty‐four localities from the Mid‐Atlantic Islands (Greenland, Iceland and the Faroe Islands) and both sides of the North Atlantic Ocean. Methods A mitochondrial marker (cytochrome c oxidase subunit I) was sequenced from individual tardigrades belonging to the genus Echiniscoides. The existence of cryptic species was detected using generalized mixed Yule coalescence analysis; lineage ages were estimated with relaxed clock methods; and the degree of geographical differentiation was analysed with samova analyses, haplotype networks and Mantel tests. Results Echiniscoides hoepneri, previously known only from Greenland, was recovered throughout the Mid‐Atlantic Islands. The Faroe Islands population was isolated from Greenland and Iceland, but overall genetic variation was low. The morphospecies Echiniscoides sigismundi had high genetic variation and consisted of at least two cryptic species. A northern and a southern species were both recovered on both sides of the Atlantic, but only the northern species was found on the Mid‐Atlantic Islands. The northern species showed signs of long‐term isolation between the Western and Eastern Atlantic, despite the potential of the Mid‐Atlantic islands to act as stepping‐stones. There was no sign of long‐term isolation in the southern species. The Mid‐Atlantic individuals of the northern species were of Eastern Atlantic origin, but Greenland and Iceland showed signs of long‐term isolation. The genetic pattern found in the southern species is not clearly geographical, and can probably be best explained by secondary contact between former isolated populations. Main conclusions North Atlantic intertidal tardigrades from the genus Echiniscoides showed strong geographical differentiation, and the Mid‐Atlantic Islands seemed unimportant as stepping stones across the Atlantic. The geographical variation of the northern species of E. sigismundi suggests post‐glacial recolonization from several refugia.  相似文献   

7.
The wreckfish Polyprion americanus , a large [>1 m total length ( L T)] demersal teleost, is distributed globally in temperate waters, including both sides of the North and South Atlantic Oceans, the Mediterranean, the western South Pacific, and the southern Indian Ocean. Wreckfish spawn off the south-eastern U.S. on an area of the Blake Plateau (the Charleston Bump) characterized by an extensive ridge having approximately 100 m relief, in 450–600 m depths. Juvenile wreckfish (<60 cm L T) are pelagic and, in the North Atlantic, are not reported from the Blake Plateau fishing area, but occur in by-catch and fishery landings in the eastern Atlantic. Analysis of nine restriction fragment length profiles from a PCR-amplified fragment (∼1.5 kb) of the ND1 mitochondrial gene indicated no stock separation between eastern North Atlantic (Azores, Majorca, Madeira), and western North Atlantic (Blake Plateau) wreckfish. Restriction site differences separate western South Atlantic wreckfish from the North Atlantic; however, South Atlantic wreckfish share restriction-site similarities with western Pacific wreckfish that are not shared with North Atlantic wreckfish. North Atlantic circulation provides a mechanism for a long-lived pelagic stage to be dispersed from Blake Plateau spawning grounds to the eastern North Atlantic. Global circulation patterns may explain both the dispersal of mtDNA haplotypes and the disjunct distribution of wreckfish body lengths in a temperate, deep-water vagile species with an extended pelagic juvenile stage such as wreckfish.  相似文献   

8.
9.
Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we present multilocus analyses of 26 single nucleotide polymorphisms (SNPs) within 10 nuclear genes to estimate population differentiation and admixture based on the characterization of 774 individuals representing North Atlantic, South Atlantic, and Mediterranean swordfish populations. Pairwise F ST values, AMOVA, PCoA, and Bayesian individual assignments support the differentiation of swordfish inhabiting these three basins, but not the current placement of the boundaries that separate them. Specifically, the range of the South Atlantic population extends beyond 5°N management boundary to 20°N-25°N from 45°W. Likewise the Mediterranean population extends beyond the current management boundary at the Strait of Gibraltar to approximately 10°W. Further, admixture zones, characterized by asymmetric contributions of adjacent populations within samples, are confined to the Northeast Atlantic. While South Atlantic and Mediterranean migrants were identified within these Northeast Atlantic admixture zones no North Atlantic migrants were identified respectively in these two neighboring basins. Owing to both, the characterization of larger number of loci and a more ample spatial sampling coverage, it was possible to provide a finer resolution of the boundaries separating Atlantic swordfish populations than previous studies. Finally, the patterns of population structure and admixture are discussed in the light of the reproductive biology, the known patterns of dispersal, and oceanographic features that may act as barriers to gene flow to Atlantic swordfish.  相似文献   

10.
Aim A central question in evolutionary ecology is the nature of environmental barriers that can limit gene flow and induce population genetic divergence, a first step towards speciation. Here we study the geographical barrier constituted by the transition zone between the Atlantic Ocean and the Mediterranean Sea, using as our model Cymodocea nodosa, a seagrass distributed throughout the Mediterranean and in the Atlantic, from central Portugal to Mauritania. We also test predictions about the genetic footprints of Pleistocene glaciations. Location The Atlantic–Mediterranean transition region and adjacent areas in the Atlantic (Mauritania to south‐west Portugal) and the Mediterranean. Methods We used eight microsatellite markers to compare 20 seagrass meadows in the Atlantic and 27 meadows in the Mediterranean, focusing on the transition between these basins. Results Populations from these two regions form coherent groups containing several unique, high‐frequency alleles for the Atlantic and for the Mediterranean, with some admixture west of the Almeria–Oran Front (Portugal, south‐west Spain and Morocco). These are populations where only one or a few genotypes were found, for all but Cadiz, but remarkably still show the footprint of a contact zone. This extremely low genotypic richness at the Atlantic northern edge contrasts with the high values (low clonality) at the Atlantic southern edge and in most of the Mediterranean. The most divergent populations are those at the higher temperature range limits: the southernmost Atlantic populations and the easternmost Mediterranean, both potential footprints of vicariance. Main conclusions A biogeographical transition region occurs close to the Almeria–Oran front. A secondary contact zone in Atlantic Iberia and Morocco results from two distinct dispersal sources: the Mediterranean and southernmost Atlantic populations, possibly during warmer interglacial or post‐glacial periods. The presence of high‐frequency diagnostic alleles in present‐day disjunct populations from the southernmost Atlantic region indicates that their separation from all remaining populations is ancient, and suggests an old, stable rear edge.  相似文献   

11.
The relative competitive ability of juvenile farm and wild salmonids was investigated to provide insight into the potential effects of introduction of cultured salmon on wild Pacific salmonid ( Oncorhynchus ) species. Aquarium experiments involving equal contests ( i.e. size matched, simultaneously introduced individuals) indicated that two wild coho salmon Oncorhynchus kisutch populations were competitively equal to a farm coho salmon population. In equal contests between farm Atlantic salmon Salmo salar (Mowi strain) and these wild coho salmon populations or coastal cutthroat trout Oncorhynchus clarki clarki , Atlantic salmon were subordinate in all cases. When Atlantic salmon were given a residence advantage, however, they were competitively equal to both wild coho salmon populations, but remained subordinate to coastal cutthroat trout. When Atlantic salmon were given a 10–30% length advantage, they were competitively equal to one wild coho salmon population but remained subordinate to the other. In equal contests in semi-natural stream channels, both wild coho and farm Atlantic salmon grew significantly more in the presence of the other species than when alone. It appears that coho salmon obtain additional food ration by out competing Atlantic salmon, whereas Atlantic salmon were stimulated to feed more in the presence of coho salmon competitors. These results suggest that wild coho salmon and cutthroat trout should out compete farm Atlantic salmon of a similar size in nature. As the relative competitive ability of Atlantic salmon improves when they have a size and residence advantage, should feral populations become established, they may exist on a more equal competitive footing owing to the long freshwater residence of Atlantic salmon.  相似文献   

12.
The surface active group (SAG) is the most obvious social interaction of the North Atlantic right whale ( Eubalaena glacialis ). SAGs are typically composed of an adult female with two or more males engaged in social behavior near the surface. Distinct calls, believed to be produced by the female, are associated with these groups. Calls recorded from three North Atlantic right whale SAGs and three South Atlantic right whale ( Eubalaena australis ) SAGs were played back to North Atlantic right whales to determine if these sounds are sufficient to attract males to the groups. Playbacks of gunshot sounds produced by North Atlantic right whales were used as a control stimulus. Thirty-six trials were carried out from 1999 to 2001 in the Bay of Fundy, Canada. Whales approached 27 of 31 SAG playbacks and 0 of 5 gunshot playbacks. Where sex was determined ( n = 28), all approaches to North Atlantic SAG recordings were by males. Individuals ( n = 22) of all age and sex classes approached South Atlantic SAG playbacks. These trials indicate that SAG calls from both populations are sufficient to attract right whales to SAGs and that males and females respond differently to stimuli from the North Atlantic. The difference in response to North and South Atlantic SAG stimuli was unexpected. Novelty, species differences in calls, and different seasonal or behavioral context for the recorded stimuli may be responsible for the differences in response.  相似文献   

13.
The Brazilian coast, the Caribbean and the tropical South Atlantic oceanic islands reef ichthyofauna separated into two major clusters: (1) the western Atlantic continental margin and Bermuda, further divided into (1a) the western North Atlantic, and (1b) the Brazilian coast; and (2) the South Atlantic oceanic islands, also divided in (2a) the Brazilian offshore islands, and (2b) Ascension and St Helena. Species geographic ranges suggest the recognition of only two western Atlantic zoogeographic provinces for tropical marine shore fishes. A Brazilian Province, including the offshore localities of Atol das Rocas, Fernando de Noronha, Trindade and St Paul's Rocks, and an expanded West Indian Province that includes Bermuda. Ascension and St Helena should be regarded as a separated Central Atlantic Province.  相似文献   

14.
Keeney DB  Heist EJ 《Molecular ecology》2006,15(12):3669-3679
Although many coastal shark species have widespread distributions, the genetic relatedness of worldwide populations has been examined for few species. The blacktip shark, (Carcharhinus limbatus), inhabits tropical and subtropical coastal waters throughout the world. In this study, we examined the genetic relationships of blacktip shark populations (n = 364 sharks) throughout the majority of the species' range using the entire mitochondrial control region (1067-1070 nucleotides). Two geographically distinct maternal lineages (western Atlantic, Gulf of Mexico, and Caribbean Sea clades, and eastern Atlantic, Indian, and Pacific Ocean clades) were identified and shallow population structure was detected throughout their geographic ranges. These findings indicate that a major population subdivision exists across the Atlantic Ocean, but not the Pacific Ocean. The historical dispersal of this widespread, coastal species may have been interrupted by the rise of the Isthmus of Panama. This scenario implies historical dispersal across the Pacific Ocean (supported by the recovery of the same common haplotype from the Philippines, Hawaii, and the Gulf of California reflecting recent/contemporary dispersal abilities) and an oceanic barrier to recent migration across the Atlantic. Genetic structure within the eastern Atlantic/Indo-Pacific (Phi(ST) = 0.612, P < 0.001) supports maternal philopatry throughout this area, expanding previous western Atlantic findings. Eastern Atlantic/Indo-Pacific C. limbatus control region haplotypes were paraphyletic to Carcharhinus tilstoni haplotypes in our maximum-parsimony analysis. The greater divergence of western Atlantic C. limbatus than C. tilstoni from eastern Atlantic/Indo-Pacific C. limbatus reflects the taxonomic uncertainty of western Atlantic C. limbatus.  相似文献   

15.
The purpose of this study was to examine the composition, distribution, ecology, and conservation status of the Atlantic elements of the Swiss flora. About 195 Atlantic and 80 Mediterranean–Atlantic vascular plant species of the European flora have been used as the basis for our analysis. The complete list of 3,143 taxa has been used as the reference for the Swiss flora. The distributions of the species are illustrated in coincidence maps based on the computer database of the Data Centre of the Swiss Flora in Geneva, Switzerland. Our study demonstrates clearly that the Atlantic flora of Europe requires a new biogeographical appraisal. The Swiss flora comprises 66 Atlantic and Mediterranean–Atlantic taxa, which are taxonomically and ecologically highly diverse. Switzerland contains 44% of all European Sub-Atlantic plants. This confirms the Sub-Atlantic geographical position of Switzerland. Only one Eu-Atlantic species growing in Switzerland, Vicia orobus, can be classified as native with certainty. This species is critically endangered and merits the highest conservation priority. Although a very alpine country, Switzerland has a relatively large number of Mediterranean–Atlantic species. The Atlantic and Mediterranean–Atlantic plants are a very threatened group in Switzerland, with wetland plants the most imperilled ecological group. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
K. Rohde 《Hydrobiologia》1986,137(1):21-28
Data from five extensive surveys each in the Pacific and Atlantic Oceans show that relative species diversity (number of parasite species per host species) of gill Monogenea of coastal marine fishes is greater in the northern and southwestern Pacific than in the northeastern and central- and southwestern Atlantic. Relative species diversity is markedly lower in the cold northeastern Atlantic than in the warmer parts of the Atlantic examined, and in the northern Pacific than in the warm southwestern Pacific. The difference between the northern Pacific and Atlantic is entirely or almost entirely due to a much greater number of species of Gyrodactylidae in the northern Pacific. A species-area relationship cannot explain the difference, because the area of the northern Pacific is not larger than that of the northern Atlantic and because Gyrodactylidae are cold-water forms which cannot have immigrated from warmer seas. The difference is tentatively explained by an evolutionary time hypothesis: more species of Gyrodactylidae have accumulated in the much older Pacific than in the Atlantic Ocean. Alternatively, an ecological time hypothesis may explain the difference: ice sheets during the last glaciation covered much more of the continental shelf in the northern Atlantic than in the northern Pacific, possibly extinguishing more Monogenea in the former than in the latter Ocean.  相似文献   

17.
The distribution and excretion of arsenobetaine in fish were investigated using whole body autoradiography and liquid scintillation counting. A single dose of synthesised [(14)C]arsenobetaine was orally administered to Atlantic salmon, Salmo salar L., and Atlantic cod, Gadus morhua L. Arsenobetaine was distributed to most organs within both species. Nevertheless, there were species differences in tissue distribution and excretory pattern. The highest level of arsenobetaine in Atlantic salmon was present in muscle tissue, while high levels of arsenobetaine were found in both muscle and liver (including gall bladder) from Atlantic cod. The results suggest that the major route of excretion was via urine, which seemed to be more important in Atlantic cod than in Atlantic salmon. Elimination of arsenobetaine via bile appeared to be negligible in both species.  相似文献   

18.
Nine polymorphic nuclear-gene (allozyme) loci were surveyed among 491 red drum ( Sciaenops ocellatus ) sampled in 1988 and 1989 from nearshore localities in the northern Gulf of Mexico (Gulf) and the Atlantic coast of the southeastern United States (Atlantic). Data were combined with those from a previous study to generate a data set of 762 individuals representing 11 sample localities in the Gulf and 175 individuals representing five sample localities in the Atlantic. The combined data set included individuals from the 1986 and 1987 year classes and permitted rigorous testing of both temporal and spatial genetic heterogeneity. Average heterozygosity-per-locus values (estimated using 33 assumed monomorphic loci) were 0·048 (Gulf red drum) and 0·046 (Atlantic red drum). Tests of heterogeneity in allele frequencies between year classes at individual localities and across regions (Gulf and Atlantic) were non-significant. Tests of spatial (geographic) heterogeneity indicated that red drum are weakly subdivided: genetically-differentiated subpopulations occur in the northern Gulf and along the south-eastern Atlantic coast. Genetic data were consistent with the hypothesis that red drum within the Gulf and along the Atlantic coast comprise singie subpopulalions. Genetic differences between Gulf and Atlantic red drum seem likeiy to stem from historical or recent interactions between dispersal and impediments to gene flow.  相似文献   

19.
Otoliths of Atlantic salmon, Salmo salar L., are more slender than the otoliths of brown trout, Salmo trutta L. Discriminant analysis on otolith measurements of juvenile Atlantic salmon and brown trout from four river systems revealed a discriminant function which distinguished more than 94% of the cases. This function was tested by using data from a fifth river with cohabiting Atlantic salmon and brown trout: all Atlantic salmon and 91 % of the brown trout were correctly classified.  相似文献   

20.
Pygmy angelfishes (genus Centropyge) are widespread and species-rich in the Indo-Pacific, but only three species are recognized in the Atlantic: Centropyge resplendens on the Mid-Atlantic Ridge, Centropyge argi in the Caribbean, and Centropyge aurantonotus in Brazil and the southern Caribbean. Atlantic species are distinguished only by color patterns and are very similar to Centropyge acanthops (Cac) in the western Indian Ocean, raising the possibility that pygmy angelfish recently invaded the Atlantic Ocean via southern Africa. To test this zoogeographic hypothesis, we compared a 454-bp segment of the mitochondrial DNA (mtDNA) control region among pygmy angelfishes of the subgenus Xiphypops, which includes the three Atlantic species, the Indian Ocean species, and an Indo-Pacific species [Centropyge fisheri (Cfi)]. The Indian Ocean species Cac is closest to the Atlantic species (d = 0.059) relative to Cfi (d = 0.077). The mtDNA genealogy indicates a colonization pathway from the Indian Ocean directly to the West Atlantic, followed by at least two waves of dispersal to the Mid-Atlantic Ridge. The gene tree for the three Atlantic species is polyphyletic, raising questions about taxonomic assignments based on color pattern. Mismatch distributions place Atlantic founder events and population expansions at about 250,000-500,000 years ago. Estimates of effective female population sizes from mismatch and coalescence analyses are consistent with founder events by tens of individuals in the western Atlantic, followed by expansions to several million individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号