首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activities of S-adenosylmethionine synthetase isozymes and some methyltransferases have been measured in liver and tumor cells of tumor-bearing mice. Following intraperitoneal transplantation of Ehrlich ascites tumor cells into mice, the activity of the β-form of the synthetase isozymes markedly increased, whereas that of the α-form did not increase so much, and the activity of tRNA methyltransferases increased gradually, while that of phospholipid, glycine and guanidoacetate methyltransferases did not. It was shown that tumor cells have only the γ-form of the synthetase and that the activity of tRNA methyltransferases in the tumor cells was very high, while that of other methyltransferases was not detectable.  相似文献   

2.
Treatment of rats with an ethionine plus adenine or a methionine diet leads not only to a marked increase of the alpha-form isozyme of S-adenosylmethionine synthetase in liver, but also to the accumulation of comparable amounts of S-adenosylethionine and S-adenosylmethionine in liver. Transplantation of ascites tumor cells into mice leads to a marked increase only of the beta-form isozyme in the host liver, but the levels of S-adenosylmethionine do not significantly change in liver.  相似文献   

3.
Dietary experiments were carried out to evaluate the physiological role of glycine methyltransferase. When rats received a 18% casein diet containing excess methionine, the activity of the enzyme in liver extracts increased with increasing methionine content in the diet. Adenosylmethionine synthetase and adenosylhomocysteinase activities were also elevated, while guanidoacetate methyltransferase activity showed no significant change. The glycine methyltransferase activity reached a maximal level after 4–6 days on the 3% methionine diet. Immunological titration showed that the increase in activity was associated with the increase in amount of the enzyme.  相似文献   

4.
Germination and outgrowth of ascospores of Saccharomyces cerevisiae 4579 require both methionine and adenine, whereas leucine is only required for outgrowth. The methionine requirement may be satisfied by S-adenosylmethionine, but this sulfonium compound will not substitute for adenine. Between 30 and 70 min of protein synthesis is initially required for the completion of germination in strain 4579. The inhibition of S-adenosylmethionine synthetase by trifluoromethionine prevents both germination and protein synthesis. During the initial stages of germination, the S-adenosylmethionine synthetase, S-adenosylmethionine decarboxylase, and transfer ribonucleic acid methyltransferases increased significantly, indicating that polyamines and/or the methylation of transfer ribonucleic acid are required for the initiation of germination.  相似文献   

5.
6.
S-adenosylmethionine, formed by the adenylation of methionine via S-adenosylmethionine synthase, is the methyl donor in virtually all known biological methylations. These methylation reactions produce a methylated substrate and S-adenosylhomocysteine, which is subsequently metabolized to homocysteine. The methylation of guanidinoacetate to form creatine consumes more methyl groups than all other methylation reactions combined. Therefore, we examined the effects of increased or decreased methyl demand by these physiological substrates on plasma homocysteine by feeding rats guanidinoacetate- or creatine-supplemented diets for 2 wk. Plasma homocysteine was significantly increased (~50%) in rats maintained on guanidinoacetate-supplemented diets, whereas rats maintained on creatine-supplemented diets exhibited a significantly lower (~25%) plasma homocysteine level. Plasma creatine and muscle total creatine were significantly increased in rats fed the creatine-supplemented or guanidinoacetate-supplemented diets. The activity of kidney L-arginine:glycine amidinotransferase, the enzyme catalyzing the synthesis of guanidinoacetate, was significantly decreased in both supplementation groups. To examine the role of the liver in mediating these changes in plasma homocysteine, isolated rat hepatocytes were incubated with methionine in the presence and absence of guanidinoacetate and creatine, and homocysteine export was measured. Homocysteine export was significantly increased in the presence of guanidinoacetate. Creatine, however, was without effect. These results suggest that homocysteine metabolism is sensitive to methylation demand imposed by physiological substrates.  相似文献   

7.
A temperature-sensitive methionine auxotroph of Neurospora crassa was found in a collection of conditional mutants and shown to be deficient in DNA methylation when grown under semipermissive conditions. The defective gene was identified as met-3, which encodes cystathionine-gamma-synthase. We explored the possibility that the methylation defect results from deficiency of S-adenosylmethionine (SAM), the presumptive methyl group donor. Methionine starvation of mutants from each of nine complementation groups in the methionine (met) pathway (met-1, met-2, met-3, met-5, met-6, met-8, met-9, met-10 and for) resulted in decreased DNA methylation while amino acid starvation, per se, did not. In most of the strains, including wild-type, intracellular SAM peaked during rapid growth (12-18 h after inoculation), whereas DNA methylation continued to increase. In met mutants starved for methionine, SAM levels were most reduced (3-11-fold) during rapid growth while the greatest reduction in DNA methylation levels occurred later. Addition of 3 mM methionine to cultures of met or cysteine-requiring (cys) mutants resulted in 5-28-fold increases in SAM, compared with wild-type, at a time when DNA methylation was reduced approximately 40%, suggesting that the decreased methylation during rapid growth in Neurospora is not due to limiting SAM. DNA methylation continued to increase in a cys-3 mutant that had stopped growing due to methionine starvation, suggesting that methylation is not obligatorily coupled to DNA replication in Neurospora.  相似文献   

8.
The activities of S-adenosylmethionine synthetase isozymes in liver were measured after rats received a diet containing excess methionine. The activity of the alpha-form increased with increasing methionine content in the diet, and reached 4-5 fold after 6 days on a 3% methionine diet. However, the activity of the beta-form showed only a 1.5 fold increase. The activity of the gamma-form in kidney showed no significance change.  相似文献   

9.
Y Sawai  Y Suma  K Tsukada 《Life sciences》1986,38(21):1975-1980
The activities of S-adenosylmethionine synthetase isozymes were studied using adult rat hepatocytes in primary culture. Hepatocytes from adult rats were isolated and cultured for several days. The activities of the synthetase isozymes did not change during primary culture. The activity of the alpha-form increased with increasing ethionine plus adenine or methionine in the medium, and reached about 5 fold after 2 days. However, the increased activity of the beta-form showed less than twice.  相似文献   

10.
An assay method has been developed for the measurement of tissue levels of S-adenosylmethionine based upon the ability of this compound to activate tripolyphosphatase associated with S-adenosylmethionine synthetase beta prepared from rat liver. The method has been used to measure S-adenosylmethionine levels in rat liver after feeding rats on various concentrations of methionine in the diet. The results obtained by this method agree well with those measured by the spectrophotometric method. The limit of sensitivity of the assay was about 0.1 nmol of S-adenosylmethionine in an incubation volume of 0.1 ml (10(-6) M).  相似文献   

11.
Serine transhydroxymethylase appears to be the first enzyme in the synthesis of the methyl group of methionine. Properties of serine transhydroxymethylase activity as assayed by the production of formaldehyde were correlated with properties of cell-free extracts for the methylation of homocysteine deriving the methyl group from the beta-carbon of serine. The reaction required pyridoxal phosphate and tetrahydrofolic acid, and was characterized in cell-free extracts with respect to Michaelis constant, pH optimum, incubation time, and optimal enzyme concentration. The activity was sensitive to inhibition by methionine, and to a much greater extent by S-adenosylmethionine. Serine transhydroxymethylase and the methylation of homocysteine reactions were not repressed by methionine and were stimulated by glycine. The activities of cell-free extracts for these reactions were significantly higher in cells in exponential than in stationary growth. When cells were grown in 10 mm glycine, the activities remained high throughout the culture cycle. The data indicated that glycine rather than methionine is involved in the control of the formation of the enzyme.  相似文献   

12.
Cerebrospinal fluid concentrations of S-adenosylmethionine, methionine, and 5-methyltetrahydrofolate were measured in 80 children and young adults in whom there was no disturbance of the methyl transfer pathway. Cerebrospinal fluid was collected under standardized conditions and analyzed by high-performance liquid chromatography. S-Adenosylmethionine, but not methionine nor 5-methyltetrahydrofolate, concentrations declined sharply during the first year of life. There was no correlation between concentrations of S-adenosylmethionine and methionine or 5-methyltetrahydrofolate. Reference ranges for the three metabolites are given.  相似文献   

13.
The enzyme serine transhydroxymethylase (EC 2.1.2.1; L-serine:tetrahydrofolate-5,10-hydroxymethyltransferase) is responsible both for the synthesis of glycine from serine and production of the 5,10-methylenetetrahydrofolate necessary as a methyl donor for methionine synthesis. Two mutants selected for alteration in serine transhydroxymethylase regulation also have phenotypes characteristic of metK (methionine regulatory) mutants, including ethionine, norleucine, and alpha-methylmethionine resistance and reduced levels of S-adenosylmethionine synthetase (EC 2.5.1.6; adenosine 5'-triphosphate:L-methionine S-adenosyltransferase) activity. Because this suggested the existence of a common regulatory component, the regulation of serine transhydroxymethylase was examined in other methionine regulatory mutants (metK and metJ mutants). Normally, serine transhydroxymethylase levels are repressed three- to sixfold in cells grown in the presence of serine, glycine, methionine, adenine, guanine, and thymine. This does not occur in metK and metJ mutants; thus, these mutations do affect the regulation of both serine transhydroxymethylase and the methionine biosynthetic enzymes. Lesions in the metK gene have been reported to reduce S-adenosylmethionine synthetase levels. To determine whether the metK gene actually encodes for S-adenosylmethionine synthetase, a mutant was characterized in which this enzyme has a 26-fold increased apparent Km for methionine. This mutation causes a phenotype associated with metK mutants and is cotransducible with the serA locus at the same frequency as metK lesions. Thus, the affect of metK mutations on the regulation of glycine and methionine synthesis in Salmonella typhimurium appears to be due to either an altered S-adenosylmethionine synthetase or altered S-adenosylmethionine pools.  相似文献   

14.
Glycine betaine (N,N,N-trimethylglycine) is an important osmoprotectant and is synthesized in response to abiotic stresses. Although almost all known biosynthetic pathways of betaine are two-step oxidation of choline, here we isolated two N-methyltransferase genes from a halotolerant cyanobacterium Aphanothece halophytica. One of gene products (ORF1) catalyzed the methylation reactions of glycine and sarcosine with S-adenosylmethionine acting as the methyl donor. The other one (ORF2) specifically catalyzed the methylation of dimethylglycine to betaine. Both enzymes are active as monomers. Betaine, a final product, did not show the feed back inhibition for the methyltransferases even in the presence of 2 m. A reaction product, S-adenosyl homocysteine, inhibited the methylation reactions with relatively low affinities. The co-expressing of two enzymes in Escherichia coli increased the betaine level and enhanced the growth rates. Immunoblot analysis revealed that the accumulation levels of both enzymes in A. halophytica cells increased with increasing the salinity. These results indicate that A. halophytica cells synthesize betaine from glycine by a three-step methylation. The changes of amino acids Arg-169 to Lys or Glu in ORF1 and Pro-171 to Gln and/or Met-172 to Arg in ORF2 significantly decreased V(max) and increased K(m) for methyl acceptors (glycine, sarcosine, and dimethylglycine) but modestly affected K(m) for S-adenosylmethionine, indicating the importance of these amino acids for the binding of methyl acceptors. Physiological and functional properties of methyltransferases were discussed.  相似文献   

15.
Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation.  相似文献   

16.
Methylation of lipids and proteins has been examined in Myxococcus xanthus using radioactive methionine and S-adenosylmethionine as methyl donors. S-adenosylmethionine is shown to be taken up by these cells and utilized directly. This permits detection of methylation in the presence of protein synthesis. Patterns of methylation obtained using methionine and S-adenosylmethionine during vegetative growth are compared by polyacrylamide gel electrophoresis, and inhibitors of protein synthesis and S-adenosylmethionine synthesis are examined for their effects on methylation. The ability to investigate methylation using exogenous S-adenosylmethionine will be advantageous in studying the role of methylation under conditions of growth and development where ongoing protein synthesis is required.  相似文献   

17.
Transport of S-adenosylmethionine in Saccharomyces cerevisiae   总被引:11,自引:8,他引:3  
The properties of a specific system for the transport of S-adenosylmethionine in yeast are described. The process was pH-, temperature-, and energy-dependent, and showed saturation kinetics. The K(m) for the system was 3.3 x 10(-6)m. Of the S-adenosylmethionine moieties tested, only S-adenosylhomocysteine competitively inhibited the uptake of the adenosylsulfonium compound. Adenine, adenosine, methionine, homocysteine, and the sulfonium compound S-methylmethionine were without effect. The analogue S-adenosylethionine showed competitive inhibition. Under conditions of inhibition of protein synthesis by cycloheximide or methionine starvation, permease activity was stable. The mutant sam-p3 apparently was able to transport S-adenosylmethionine only by diffusion. Uptake by diploids containing this mutation was directly proportional to the gene dose.  相似文献   

18.
Methionine S-adenosyltransferase (MAT) catalyzes the only reaction that produces the major methyl donor in mammals. Low-dose methotrexate is the most commonly used disease-modifying antirheumatic drug in human rheumatic conditions. The present study was conducted to test the hypothesis that methotrexate inhibits MAT expression and activity in vitro and in vivo. HepG2 cells were cultured under folate restriction or in low-dose methotrexate with and without folate or methionine supplementation. Male C57BL/6J mice received methotrexate regimens that reflected low-dose clinical use in humans. S-adenosylmethionine and MAT genes, proteins and enzyme activity levels were determined. We found that methionine or folate supplementation greatly improved S-adenosylmethionine in folate-depleted cells but not in cells preexposed to methotrexate. Methotrexate but not folate depletion suppressed MAT genes, proteins and activity in vitro. Low-dose methotrexate inhibited MAT1A and MAT2A genes, MATI/II/III proteins and MAT enzyme activities in mouse tissues. Concurrent folinate supplementation with methotrexate ameliorated MAT2A reduction and restored S-adenosylmethionine in HepG2 cells. However, posttreatment folinate rescue failed to restore MAT2A reduction or S-adenosylmethionine level in cells preexposed to methotrexate. Our results provide both in vitro and in vivo evidence that low-dose methotrexate inhibits MAT genes, proteins, and enzyme activity independent of folate depletion. Because polyglutamated methotrexate stays in the hepatocytes, if methotrexate inhibits MAT in the liver, then the efficacy of clinical folinate rescue with respect to maintaining hepatic S-adenosylmethionine synthesis and normalizing the methylation reactions would be limited. These findings raise concerns on perturbed methylation reactions in humans on low-dose methotrexate. Future studies on the clinical physiological consequences of MAT inhibition by methotrexate and the potential benefits of S-adenosylmethionine supplementation on methyl group homeostasis in clinical methotrexate therapies are warranted.  相似文献   

19.
The activity of guanidoacetate methyltransferase has been measured in various tissues of mice and tumor cells. The creatine levels in tumor cells are high, although guanidoacetate methyltransferase activity was not detected. To confirm these results, labeled creatine was synthesized by guanidoacetate and its methyltransferase in the presence of S-adenosyl-L-[methyl-3H]methionine, and administered to a mouse with or without tumor cells. High levels of the uptake of the creatine were observed in tumor cells, intestine, heart and muscle of the mouse injected with [3H]creatine into a tumor-bearing mouse. These organs, however, had no detectable activity of guanidoacetate methyltransferase. Labeled creatine phosphate in the tissue was less than 10% compared to total labeled creatine.  相似文献   

20.
The effects of nitrous oxide inactivation of the vitamin B12-dependent enzyme, methionine synthetase (EC 2.1.1.13), and of methionine on folate coenzyme metabolism were determined in rat liver, kidney, brain, small intestine and bone marrow cells. Nitrous oxide exposure led to an increase in the proportion of 5-methyltetrahydrofolate at the expense of other reduced folates in all tissues examined. Administration of methionine at levels up to 400 mg/kg resulted in the normalization of folate coenzyme patterns in liver as a result of the increased levels of S-adenosylmethionine. In other tissues examined, methionine had no effect on the levels of S-adenosylmethionine or S-adenosylhomocysteine, or on the distribution of folate coenzymes. These results are consistent with the methyl trap hypothesis as the explanation of the relationship between vitamin B12 and folate metabolism, and provide direct evidence that the sparing effect of methionine on folate metabolism is a phenomenon restricted to the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号