首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of post-mortem interval often employs analysis of age structure and diversity of saprophilic arthropods (including mites) that have colonized corpses. The majority of research has focused on decomposition processes in terrestrial situations, with relatively few studies on the utility of freshwater invertebrates as forensic agents. Most freshwater mites are predators, detritivores or algivores, and hence seem unlikely candidates as tools for aging or determining original placement of corpses or other bodily remains. The main exceptions to this are some aquatic Astigmata, which have occasionally been observed feeding on the tissues of moribund aquatic animals. Here I investigate Canadian law literature and published forensic research to determine how frequently freshwater mites are included in court cases or are found attending dead bodies. I found only one questionable report of aquatic mites in over 30 years of material from legal databases. Three published research papers reported mites associated with vertebrate flesh in fresh water. Only one paper provided an identification of mites finer than ‘Acari’ or ‘water mites’. In this case, the mites were identified as Hydrozetes (Oribatida). In none of these papers were mites reported to be high in abundance or biomass, and in two of the three publications methodological problems and/or poor reporting of data raised doubts about interpretation of results. I conclude that based on their biology, there is little expectation that freshwater mites should be of great value as forensic tools, and this survey of legal and scientific literature supports my argument.  相似文献   

2.
Predatory pelagic water mites, Piona sp., in a small subtropical lake of Argentina showed rapid numerical response and protection from fish consumption. In experiments, predation rates of Piona on cladocerans equalled those of the principle lake planktivore, Moenkhausia intermedia Eigenmann (about 100 prey · predator–1 day–1). As a result, the mites caused a summer depression in the dominant lake zooplankter, Daphnia laevis Birge, evidenced by the analysis of its population dynamics and simple modelling.  相似文献   

3.
We provide the first evidence of a small-headed fly planidium (first instar larva; Diptera: Acroceridae) associated with a whirligig mite (Acari: Acariformes: Prostigmata: Anystina: Anystidae) in Baltic amber. This fossil is surprising as parasitic nematodes are the only metazoans known to successfully attack acariform mites, and Acroceridae are believed to be host-restricted parasitoids of spiders. The fossil corroborates a previously published, but widely dismissed, paper that first reported parasitism of parasitengone mites by acrocerid planidia. The possible natural history implications of this find are discussed.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 9–13.  相似文献   

4.
The adaxial (upper) and abaxial (lower) surfaces of a plant leaf provide heterogeneous habitats for small arthropods with different environmental conditions, such as light, humidity, and surface morphology. As for plant mites, some agricultural pest species and their natural enemies have been observed to favor the abaxial leaf surface, which is considered an adaptation to avoid rain or solar ultraviolet radiation. However, whether such a preference for the leaf underside is a common behavioral trait in mites on wild vegetation remains unknown. The authors conducted a 2-year survey on the foliar mite assemblage found on Viburnum erosum var. punctatum, a deciduous shrub on which several mite taxa occur throughout the seasons, and 14 sympatric tree or shrub species in secondary broadleaf-forest sites in Kyoto, west–central Japan. We compared adaxial–abaxial surface distributions of mites among mite taxa, seasons, and morphology of host leaves (presence/absence of hairs and domatia). On V. erosum var. punctatum, seven of 11 distinguished mite taxa were significantly distributed in favor of abaxial leaf surfaces and the trend was seasonally stable, except for Eriophyoidea. Mite assemblages on 15 plant species were significantly biased towards the abaxial leaf surfaces, regardless of surface morphology. Our data suggest that many mite taxa commonly prefer to stay on abaxial leaf surfaces in wild vegetation. Oribatida displayed a relatively neutral distribution, and in Tenuipalpidae, the ratio of eggs collected from the adaxial versus the abaxial side was significantly higher than the ratio of the motile individuals, implying that some mite taxa exploit adaxial leaf surfaces as habitat.  相似文献   

5.
Fundamental knowledge on the morphology, biology, ecology, and economic importance of Eriophyoidea has been exhaustively compiled by Lindquist et al. (Eriophyoid mites—their biology, natural enemies and control; Elsevier, 1996). Since that time, the number of recognized species and the economic importance of the taxon have increased substantially. The aim of this paper is to analyze and briefly review new findings from eriophyoid mites’ literature after Lindquist et al. book, stressing persistent gaps and needs. Much recent attention has been given to sampling and detection, taxonomy and systematics, faunistic surveys, internal morphology, rearing techniques, biological and ecological aspects, biomolecular studies, and virus vectoring. Recommendations are made for integrating research and promoting broader dissemination of data among specialists and non-specialists.  相似文献   

6.
Awesome or ordinary? Global diversity patterns of oribatid mites   总被引:2,自引:0,他引:2  
Diversity of most above-ground organisms increases with decreasing latitude, but the biogeographical and macroecological diversity patterns of below-ground animals have been poorly studied. We investigated the latitudinal diversity gradient in a primarily below-ground living soil taxon, oribatid mites. Furthermore, oribatid mite species richness from islands and mainlainds was tested for correlation with the size of the respective area (island or mainland) to evaluate if their species–area relationships are similar to those of above-ground taxa. The results suggest that for oribatid mites 1) diversity increases from the boreal to the warm temperate region but not further to the tropics, and 2) species–area relationships for islands and mainlands are similar to those of above-ground taxa, but this is mainly caused by very small islands, such as Cocos islands, and very large islands, such as Madagascar. When these islands are excluded the species–area relationship strongly differs from those of typical islands. The results support the view that below-ground animal taxa are generalists that inhabit wide niches. Most small islands have relatively rich oribatid mite faunas, supporting the observation that a large number of species can coexist in a small area (high α-diversity).  相似文献   

7.
8.
We questioned the well-accepted concept that spider mite-infested plants attract predatory mites from a distance. This idea is based on the preference demonstrated by predatory mites such as Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) for volatiles produced by spider mite-infested plants in a closed environment (Y-tube wind tunnel). However, in natural open environments, kidney bean leaves heavily infested with Tetranychus urticae Koch (Acari: Tetranychidae) did not attract P. persimilis from the same distances as were used in the Y-tube tests. Therefore, the attraction of predatory mites for spider mite-infested plant volatiles in the Y-tube tests may reflect a preference in a closed environment and should be carefully interpreted as a basis for extrapolating predator–prey attraction mechanisms in the wild. On the other hand, we showed that adult female P. persimilis could follow trails laid down by adult female T. urticae in the laboratory and in natural open environments. Consequently, we propose that following spider mite trails represents another prey-searching cue for predatory mites.  相似文献   

9.
A fluctuating environment may be perceived as a composition of different environments, or as an environment per se, in which it is the fluctuation itself that poses a selection pressure. If so, then organisms may adapt to this alternation. We tested this using experimental populations of spider mites that have been evolving for 45 generations in a homogeneous environment (pepper or tomato plants), or in a heterogeneous environment composed of an alternation of these two plants approximately at each generation. The performance (daily oviposition rate and juvenile survival) of individuals from these populations was tested in each of the homogeneous environments, and in two alternating environments, one every 3 days and the other between generations. To discriminate between potential genetic interactions between alleles conferring adaptation to each host plant and environmental effects of evolving in a fluctuating environment, we compared the performance of all lines with that of a cross between tomato and pepper lines. As a control, two lines within each selection regime were also crossed. We found that crosses between alternating lines and between pepper and tomato lines performed worse than crosses between lines evolving in homogeneous environments when tested in that environment. In contrast, alternating lines performed either better or similarly to lines evolving in homogeneous environments when tested in a fluctuating environment. Our results suggest that fluctuating environments are more than the juxtaposition of two environments. Hence, tests for adaptation of organisms evolving in such environments should be carried out in fluctuating conditions.  相似文献   

10.
Feather mites on birds: costs of parasitism or conditional outcomes?   总被引:2,自引:0,他引:2  
Feather mites (suborder Astigmata, superfamilies Analgoidea, Pterolichoidea and Freyaniidae) are among the commonest ectosymbionts of birds. Most researchers have assumed they are parasites, having negative effects on hosts. Here we present evidence that suggests that feather mites may not be parasites. We develop a framework for considering conditional outcomes in these interspecific associations, dealing with different kinds of relationships between symbionts. The non-parasitic status of feather mites is supported by a literature review as well as by preliminary data on mites' food. We illustrate symbiotic relationships with a graphical model showing different scenarios in which hosts' cost-benefit relations are determined by the interactions among their symbionts.  相似文献   

11.
The effect of the provision of pollen on the impact of pesticides on the predatory mite Kampimodromus aberrans was assessed at individual and population levels. In the laboratory we evaluated the influence of pollen amount and pollen application frequency on lethal and sub-lethal effects of chlorpyrifos and spinosad. In a potted plant experiment, the effects of pesticides and pollen were assessed on predatory mite population abundance. In the laboratory, survival and fecundity of predatory mites were reduced by insecticides, and spinosad was more toxic than chlorpyrifos. In the same experiment, high pollen application frequency alleviated the sub-lethal effect induced by chlorpyrifos. On potted plants, pollen applications reduced the impact of chlorpyrifos on K. aberrans, whereas without pollen applications the impact of spinosad and chlorpyrifos on the predatory mite population was similar. Results obtained here highlight that the provision of fresh pollen is of particular importance for predatory mites when pesticides are applied.  相似文献   

12.
13.
Reproduction ofVarroa jacobsoni Oudemans (Acari: Varroidae) and the number ofVarroa mites that were found dead on the bottom board of the hive, were studied in relation to the period the mites spent on adult honey bees,Apis mellifera L. (Hymenoptera: Apidae), prior to invasion into brood cells. The maximum period on adult bees was 23 days. To introduce mites, combs with emerging worker brood, heavily infested with mites, were placed into a colony and removed the next day. At the beginning of the first day following emergence from brood cells, 18% of the mites introduced into the colony was found on the bottom of the hive. Part of these mites may already have died inside the capped brood cells, and then fallen down after cleaning of cells by the bees. At the second and third day following emergence, respectively 4% and 2% of the mites on adult bees at the previous day was recovered on the bottom, whereas from the fourth day on only 0.6% of the mites on adult bees was recovered on the bottom per day. After invasion into brood cells, 8–12% of the mites did not produce any offspring. Of the mites that did reproduce, the total number of offspring was 4.0–4.4 per mite during one reproductive cycle, part of which may reach maturity resulting in 1.2–1.3 viable daughters, and 8–10% of the mites produced only male offspring. Reproduction was independent of the period the mites had spent on adult bees prior to invasion into brood cells.  相似文献   

14.
Water mites (Acari: Hydrachnida) are unusual among the typically cryptic freshwater fauna in that many species are brightly colored red or orange, and also appear to be distasteful to fish. This apparent aposematism (use of color to warn predators) has been previously explained as the evolutionary end-product of pressure from fish predation. The fish-predation argument has been supported by observations that fish spit out red mites, powder made from red water mites is more distasteful to fish than powder made from non-red mites, and red mites appear to be more abundant than non-red mites in water bodies where fish are present. In this paper, we challenge the hypothesis that fish were the sole driving force behind the evolution of aposematism in water mites. We show that non-red mites actually dominate in water bodies with fish, and that red mites are more abundant in temporary, fishless water bodies. We also demonstrate that powder made from red, terrestrial velvet mites (Trombidiidae) was as distasteful to fish as powder made from red water mites. We suggest that the main role of red and orange carotenoid pigments may be to act as photoprotectants, and hypothesize that redness originated in the terrestrial ancestors of water mites and has been retained in certain lineages of water mites after the invasion of the aquatic habitat. We also suggest that distastefulness evolved subsequent to bright coloration in response to increased conspicuousness to predators. Relaxed selection for redness has occurred when adults and/or larvae are less exposed to sunlight, either through occupying more protected habitats, parasitizing more nocturnal hosts, or parasitizing hosts for a short period of time. Our ability to test this alternative hypothesis is hampered by lack of knowledge of the source and mode of action of distastefulness, and of phylogenetic relationships among the Parasitengona.  相似文献   

15.
Feather mites (Arachnida: Acari: Astigmata) feed mainly on secretions of the uropygial gland of birds. Here, we use analyses corrected for phylogeny and body size to show that there is a positive correlation between the size of this gland and mite abundance in passerine birds at an interspecific level during the breeding season, suggesting that the gland mediates interactions between mites and birds. As predicted on the basis of hypothesized waterproofing and antibiotic functions of uropygial gland secretions, riparian/marsh bird species had larger glands and higher mite loads than birds living in less mesic terrestrial environments. An unexpected pattern was a steeper relationship between mite load and gland size in migratory birds than in residents. If moderate mite loads are beneficial to a host but high loads detrimental, this could create complex selection regimes in which gland size influences mite load and vice versa. Mites may exert selective pressures on gland size of their hosts that has resulted in smaller glands among migratory bird species, suggesting that smaller glands may have evolved in these birds to attenuate a possible detrimental effect of feather mites when present in large numbers.  相似文献   

16.
Water mites (Acari: Hydrachnida) are unusual among the typically cryptic freshwater fauna in that many species are brightly colored red or orange, and also appear to be distasteful to fish. This apparent aposematism (use of color to warn predators) has been previously explained as the evolutionary end-product of pressure from fish predation. The fish-predation argument has been supported by observations that fish spit out red mites, powder made from red water mites is more distasteful to fish than powder made from non-red mites, and red mites appear to be more abundant than non-red mites in water bodies where fish are present. In this paper, we challenge the hypothesis that fish were the sole driving force behind the evolution of aposematism in water mites. We show that non-red mites actually dominate in water bodies with fish, and that red mites are more abundant in temporary, fishless water bodies. We also demonstrate that powder made from red, terrestrial velvet mites (Trombidiidae) was as distasteful to fish as powder made from red water mites. We suggest that the main role of red and orange carotenoid pigments may be to act as photoprotectants, and hypothesize that redness originated in the terrestrial ancestors of water mites and has been retained in certain lineages of water mites after the invasion of the aquatic habitat. We also suggest that distastefulness evolved subsequent to bright coloration in response to increased conspicuousness to predators. Relaxed selection for redness has occurred when adults and/or larvae are less exposed to sunlight, either through occupying more protected habitats, parasitizing more nocturnal hosts, or parasitizing hosts for a short period of time. Our ability to test this alternative hypothesis is hampered by lack of knowledge of the source and mode of action of distastefulness, and of phylogenetic relationships among the Parasitengona.  相似文献   

17.
In this study, the findings of three water mite species of the family Hygrobatidae collected from different streams in Turkey were evaluated. Hygrobates (s. str.) anatolicus Esen & Pešić, sp. n. is described as new for science. Hygrobates (Rivobates) diversiporus Sokolow, 1927 and Atractides (s. str.) nikooae Pešić, 2004, which were illustrated and thoroughly discussed, are new records for the Turkish fauna.  相似文献   

18.
Optimal foraging theory predicts that predators prefer those prey species that are most rewarding in terms of reproductive success, which is dependent on prey quality and prey availability. To investigate which selection pressures may have moulded prey preference in an acarine system consisting of two prey species and three predator species, we tested whether prey preference of the predators is matched by the associated reproductive success.The predators involved areAmblyseius finlandicus (Oudemans),Am. potentillae (Garman) andTyphlodromus pyri Scheuten. The prey species are the apple rust mite (Aculus schlechtendali (Nalepa)) and the fruit-tree red spider mite (Panonychus ulmi (Koch)).Reproductive success was assessed in terms of intrinsic rate of increase and for one predator also in terms of diapause induction. All three predator species reached highest reproductive success on the same prey species: apple rust mite. This was most pronounced for the predatorAm. finlandicus, because its larval stage suffered severe mortality when feeding onP. ulmi.An independent study on prey preference of the three predator species (Dicke et al., 1988) revealed thatAm. finlandicus prefersAc. schlechtendali toP. ulmi, whereas the other two predator species have the reverse preference.Thus, on the basis of current data, prey preference ofAm. finlandicus can be understood in terms of reproductive success. However, this is not so for prey preference ofT. pyri andAm. potentillae. Investigations needed for a better understanding of prey preference of the last-named two predator species are discussed.  相似文献   

19.
20.
The results from investigations on oribatid mites of the Galápagos archipelago during 10 years are presented. Samples were taken on all larger and most smaller islands of the archipelago, as well as in all vegetation zones and some special habitats such as grass or cactus litter and fumaroles. A total of 202 oribatid species belonging to 64 families were encountered; among them 81 species are new to science. The Oribatida occur from the littoral zone to the summit of the volcanoes. Diversity and abundance increases from the arid to the moister zones at higher elevations. Most species prefer moist habitats at medium to higher elevations of the islands, in some parts reaching remarkably high abundances (in the Scalesia zone of Santa Cruz approximately 18 000 individuals m–2). The species richness of an island depends on the altitude and number of available habitats rather than the area of the island. Many oribatid species on the Galápagos Islands have a wide biogeographical distribution. The majority originate from the Central and South American mainland, but several Pacific and even Holarctic elements were also found. In comparison with the species composition of the adjacent mainland, the oribatid mite fauna of the Galápagos Islands can be regarded as disharmonic. Sea surface transportation has been proved at least between the islands, which also applies to oribatid species living at higher elevations. Long distance dispersal can be assumed to be mainly hydrochorous. The oribatid fauna of the littoral and arid vegetation zones is presented in detail. Some species even inhabit such extreme habitats as warm fern litter in fumaroles or hot volcanic soils. Others were mainly found in or near agricultural areas, suggesting human introduction. Striking distribution patterns within the archipelago are discussed. The distribution of endemic forms in the genera Aeroppia, Scapheremaeus, Scheloribates and Cultrobates indicates both speciation on different islands, as well as speciation on the same island by occupying different habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号