首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We lay new foundations to the hypothesis that the genetic code is adapted to evolutionary retention of information in the antisense strands of natural DNA/RNA sequences. In particular, we show that the genetic code exhibits, beyond the neutral replacement patterns of amino acid substitutions, optimal properties by favoring simultaneous evolution of proteins encoded in DNA/RNA sense-antisense strands. This is borne out in the sense-antisense transformations of the codons of every amino acid which target amino acids physicochemically similar to each other. Moreover, silent mutations in the sense strand generate conservative ones in its antisense counterpart and vice versa. Coevolution of proteins coded by complementary strands is shown to be a definite possibility, a result which does not depend on any physical interaction between the coevolving proteins. Likewise, the degree to which the present genetic code is dedicated to evolutionary sense-antisense tolerance is demonstrated by comparison with many randomized codes. Double-strand coding is quantified from an information-theoretical point of view.  相似文献   

2.
3.
Neurophysiological studies in monkeys show that activity of neurons in primary cortex (M1), pre-motor cortex (PMC), and cerebellum varies systematically with the direction of reaching movements. These neurons exhibit preferred direction tuning, where the level of neural activity is highest when movements are made in the preferred direction (PD), and gets progressively lower as movements are made at increasing degrees of offset from the PD. Using a functional magnetic resonance imaging adaptation (fMRI-A) paradigm, we show that PD coding does exist in regions of the human motor system that are homologous to those observed in non-human primates. Consistent with predictions of the PD model, we show adaptation (i.e., a lower level) of the blood oxygen level dependent (BOLD) time-course signal in M1, PMC, SMA, and cerebellum when consecutive wrist movements were made in the same direction (0° offset) relative to movements offset by 90° or 180°. The BOLD signal in dorsolateral prefrontal cortex adapted equally in all movement offset conditions, mitigating against the possibility that the present results are the consequence of differential task complexity or attention to action in each movement offset condition.  相似文献   

4.
5.
The trp RNA-binding Attenuation Protein (TRAP) from Bacillus subtilis is an 11-subunit protein that binds a series of 11 GAG and UAG repeats separated by two to three-spacer nucleosides in trp leader mRNA. The structure of TRAP bound to an RNA containing 11 GAG repeats shows that the RNA wraps around the outside of the protein ring with each GAG interacting with the protein in nearly identical fashion. The only direct hydrogen bond interactions between the protein and the RNA backbone are to the 2'-hydroxyl groups on the third G of each repeat. Replacing all 11 of these guanosines with deoxyriboguanosine eliminates measurable binding to TRAP. In contrast, a single riboguanosine in an otherwise entirely DNA oligonucleotide dramatically stabilizes TRAP binding, and facilitates the interaction of the remaining all-DNA portion with the protein. Studies of TRAP binding to RNAs with between 2 and 11 GAGs, UAGs, AAGs, or CAGs showed that the stability of a TRAP-RNA complex is not directly proportional to the number of repeats in the RNA. These studies also showed that the effect of the identity of the residue in the first position of the triplet, with regard to binding to TRAP, is dependent on the number of repeats in the RNA. Together these data support a model in which TRAP binds to RNA by first forming an initial complex with a small subset of the repeats followed by a cooperative interaction with the remaining triplets.  相似文献   

6.
Ma Y  Lieber MR 《Biochemistry》2001,40(32):9638-9646
Despite its central role in the nonhomologous DNA end joining process, we still have an incomplete picture of the interaction between Ku and DNA. Here we describe both kinetic (surface plasmon resonance or SPR) and equilibrium (electrophoretic mobility shift assay or EMSA) studies of Ku binding to linear double-stranded DNA. Ku interaction with 1-site DNA is noncooperative, as expected. Electrophoretic mobility shift assays indicate cooperativity in the binding of Ku molecules to DNA long enough for two Ku molecules to bind (2-site DNA). For the kinetic studies, we use surface plasmon resonance in which one end of the DNA molecules is linked to a surface while the other end is free to interact with Ku. We find that one Ku molecule dissociates from 1-site DNA with simple Langmuir (i.e., independent) kinetics. However, two Ku molecules associate and dissociate from 2-site DNA with a time course that cannot be described as a simple Langmuir interaction. On 3- and 4-site DNA, EMSA and SPR studies do not reveal any cooperativity, suggesting that the middle Ku does not exhibit cooperative interaction with the two Ku molecules bound at the DNA ends. These results indicate that Ku molecules can demonstrate cooperative interaction, and this is influenced by their positions along the DNA.  相似文献   

7.
I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. Aside from these spatial codes for objects, however, the coding of visual space is limited. We are extremely poor at remembering small spatial displacements across eye movements, indicating (at best) impoverished coding of spatial position per se. Also, effects of element separation on spatial extinction can be eliminated by filling the space with an occluding object, indicating that spatial effects on visual selection are moderated by object coding. Overall, there are separate limits on visual processing reflecting: (i) the competition to code parts within objects; (ii) the small number of independent objects that can be coded in parallel; and (iii) task-based selection of whether within- or between-object codes determine behaviour. Between-object coding may be linked to the dorsal visual system while parallel coding of parts within objects takes place in the ventral system, although there may additionally be some dorsal involvement either when attention must be shifted within objects or when explicit spatial coding of parts is necessary for object identification.  相似文献   

8.
Glia are required for axon pathfinding along longitudinal trajectories, but it is unknown how this relates to the molecular paradigm of axon guidance across the midline. Most interneuron axons in bilateral organisms cross the midline only once. Preventing them from recrossing the midline requires the expression of Robo receptors on the axons. These sense the repulsive signal Slit, which is produced by the midline. The lateral positioning of longitudinal axons depends on the response to Slit by the combination of Robo receptors expressed by the axons, on selective fasciculation, and on longitudinal (lateral) glia. Here, we analyse how longitudinal glia influence reading of the 'Robo code' by axons. We show that whereas loss of robo1 alone only affects the most medial axons, loss of both glial cells missing (gcm) and robo1 causes a severe midline collapse of longitudinal axons, similar to that caused by the loss of multiple Robo receptors. Furthermore, whereas ectopic expression of robo2 is sufficient to displace the medial MP2 axons along a more lateral trajectory, this does not occur in gcm-robo1 double-mutant embryos, where axons either do not extend at all or they misroute exiting the CNS. Hence, lateral neuron-glia interactions steer the response of axons to the Robo code.  相似文献   

9.
10.
We established a genotyping system for a panel of 150 SNPs in the coding regions of mitochondrial DNA based on multiplex tag-array minisequencing. We show the feasibility of this system for simultaneous identification of individuals and prediction of the geographical origin of the mitochondrial DNA population lineage of the sample donors by genotyping the panel of SNPs in 265 samples representing nine different populations from Africa, Europe, and Asia. Nearly 40,000 genotypes were produced in the study, with an overall genotyping success rate of 95% and accuracy close to 100%. The gene diversity value of the panel of 150 SNPs was 0.991, compared to 0.995 for sequencing 500 nucleotides of the hypervariable regions I and II of mtDNA. For 17 individuals with identical sequences in the hypervariable regions of mtDNA, our panel of SNPs increased the power of discrimination. We observed 144 haplotypes that correspond to previously determined mitochondrial "haplogroups," and they allowed prediction of the origin of the maternal population lineage of 97% of the analyzed samples.  相似文献   

11.
Allosteric interactions in the cupro-heme enzyme tryptophan oxygenase (EC 1.13.11.11) of Pseudomonas acidovorans are shown to be pH-dependent. Increasing the assay pH from 6.0 to 8.0 progressively desensitizes the enzyme from both homotropic and heterotropic ligand interactions. This pH-dependent reversible transition has a pK of 6.2. Hill coefficients for the substrate L-tryptophan of 2.0 and 1.4 were measured at pH 6.0 and pH 7.0, respectively. In attempting to identify the enzymatic residue (or residues) responsible for these pH-dependent effects, the enzyme was observed to be irreversibly inactivated by photoinduced oxidation in the presence of the sensitizer, methylene blue. The photoinactivated enzyme showed a loss of one-half its Soret (405 nm) absorption which accompanied the loss of one-half its heme and histidine contents. This first order photoinduced inactivation was pH-dependent and corresponded to a requirement for a protonated species with a pK of 6.2. These results suggest that histidine residues may be involved in the catalytic function and in mediating cooperative interactions of tryptophan oxygenase. Absolute and difference sedimentation velocity analyses indicate that the molecule undergoes a conformational transition when the pH is decreased from pH 8.0 to pH 6.0. This conformational alteration, measured as a 3.9% increase in S20, w can be regarded as an equivalent decrease in the frictional coefficient. If, a more or less spherical shape to the molecule is assumed, then, the 3.9% decrease in the frictional coefficient between pH 8.0 and 6.0 corresponds to a 12% decrease in apparent hydrodynamic volume of the enzyme. Thus, protonation of an enzymatic moiety, possibly histidine, determines both the conformational and functional interactions between enzymatic sites.  相似文献   

12.
13.
The members of the glial cell line-derived neurotrophic factor (GDNF) family signal via binding to the glycosyl phosphatidylinositol-anchored membrane proteins, the GDNF family receptors alpha (GFRalpha), and activation of cRET. We performed a detailed analysis of the binding of GDNF and neurturin to their receptors and investigated the influence of cRET on the binding affinities. We show that the rate of dissociation of (125)I-GDNF from GFRalpha1 is increased in the presence of 50 nm GDNF, an effect that can be explained by the occurrence of negative cooperativity. Scatchard plots of the ligand concentration binding isotherms reveal a pronounced downward curvature at low (125)I-GDNF concentrations suggesting the presence of positive cooperativity. This effect is observed in the range of GDNF concentrations responsible for biological activity (1-20 pm) and may have an important role in cRET-independent signaling. A high affinity site with a K(D) of 11 pm for (125)I-GDNF is detected only when GFRalpha1 is co-expressed with cRET at a DNA ratio of 1:3. These results suggest an interaction of GFRalpha1 and cRET in the absence of GDNF and demonstrate that the high affinity binding can be measured only when cRET is present.  相似文献   

14.
15.
Aim Temporally replicated observations are essential for the calibration and validation of species distribution models (SDMs) aiming at making temporal extrapolations. We study here the usefulness of a general‐purpose monitoring programme for the calibration of hybrid SDMs. As a benchmark case, we take the calibration with data from a monitoring programme that specifically surveys those areas where environmental changes expected to be relevant occur. Location Catalonia, north‐east of Spain. Methods We modelled the distribution changes of twelve open‐habitat bird species in landscapes whose dynamics are driven by fire and forest regeneration. We developed hybrid SDMs combining correlative habitat suitability with mechanistic occupancy models. We used observations from two monitoring programmes to provide maximum‐likelihood estimates for spread parameters: a common breeding bird survey (CBS) and a programme specifically designed to monitor bird communities within areas affected by wildfires (DINDIS). Results Both calibration with CBS and DINDIS data yielded sound spread parameter estimates and range dynamics that suggested dispersal limitations. However, compared to calibration with DINDIS data, calibration with CBS data leads to biased estimates of spread distance for seven species and to a higher degree of uncertainty in predicted range dynamics for six species. Main conclusions We have shown that available monitoring data can be used in the calibration of the mechanistic component of hybrid SDMs. However, if the dynamics of the target species occur within areas not well covered, general‐purpose monitoring data can lead to biased and inaccurate parameter estimates. To determine the potential usefulness of a given monitoring data set for the calibration of the mechanistic component of a hybrid SDM, we recommend quantifying the number of surveyed sites that are predicted to undergo habitat suitability changes.  相似文献   

16.
The proliferation and aging of fibroblast populations has been postulated to include a process of clonal selection. Using carbocyanine dyes to label clonal fibroblast populations, we were able to follow their growth in mixed cultures. Individual fibroblast clones seeded as the minority population (20%) with either another clone or the parent line (differentially labeled) always demonstrated increase relative growth so that, by the end of 4 weeks, approximately equal numbers of both populations were present. Labeled cells of the same clone mixed as the minority population with differentially labeled cells of the same clone maintained their minority status. The results indicate that clonal populations of fibroblasts are able to recognize "self" as different from "non-self" and that this recognition leads to alterations in cellular proliferation.  相似文献   

17.
18.
19.
Cytoplasmic dynein is a force-transducing ATPase that powers the movement of cellular cargoes along microtubules. Two identical heavy chain polypeptides (> 500 kDa) of the cytoplasmic dynein complex contain motor domains that possess the ATPase and microtubule-binding activities required for force production [1]. It is of great interest to determine whether both heavy chains (DHCs) in the dynein complex are required for progression of the mechanochemical cycle and motility, as observed for other dimeric motors. We have used transgenic constructs to investigate cooperative interactions between the two motor domains of the Drosophila cytoplasmic dynein complex. We show that 138 kDa and 180 kDa amino-terminal fragments of DHC can assemble with full-length DHC to form heterodimeric complexes containing only a single motor domain. The single-headed dynein complexes can bind and hydrolyze ATP, yet do not show the ATP-induced detachment from microtubules that is characteristic of wild-type homodimeric dynein. These results suggest that cooperative interactions between the monomeric units of the dimer are required for efficient ATP-induced detachment of dynein and unidirectional movement along the microtubule.  相似文献   

20.
Mutations in the insulin receptor gene can cause insulin resistance. Previously, we have identified a mutation substituting glutamic acid for lysine at position 460 in the alpha-subunit of the insulin receptor in a patient with a genetic form of insulin resistance. In the present work, we have investigated the effect upon receptor function of amino acid substitutions at position 460. Decreasing the pH from 8.0 to 5.5 caused a progressive acceleration of the dissociation of 125I-insulin from the wild-type insulin receptor. Substitution of acidic amino acids (Glu or Asp) for Lys460 decreased the ability of acid pH to accelerate dissociation of 125I-insulin. In contrast, substitution of Arg or neutral amino acids (Val, Met, Thr, or Gln) had no effect upon the sensitivity to acid pH. Correlated with decreased sensitivity to acid pH, substitution of Glu or Asp at position 460 retarded the dissociation of 125I-insulin from intracellular receptors subsequent to receptor-mediated endocytosis. Furthermore, retardation of dissociation of 125I-insulin from the internalized receptor was associated with a decreased half-life of the receptor. In summary, the Glu460 mutation appears to cause insulin resistance by accelerating receptor degradation and, thereby, decreasing the number of insulin receptors on the cell surface. Additional studies suggested that Lys460 may provide the amino groups whereby disuccinimidyl suberate cross-links the two alpha-subunits to each other. Consistent with the hypothesis that Lys460 is located at the interface between adjacent alpha-subunits, substitutions at position 460 impair cooperative interactions among insulin binding sites. The Glu460 mutation decreases positively cooperative binding interactions; the Arg460 mutation impairs negative cooperativity. Mutations at position 460 in the alpha-subunit did not decrease the ability of insulin to stimulate receptor tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号