首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodobacter sphaeroides is chemotactic to glutamate and most other amino acids. In Escherichia coli , chemotaxis involves a membrane-bound sensor that either binds the amino acid directly or interacts with the binding protein loaded with the amino acid. In R. sphaeroides , chemotaxis is thought to require both the uptake and the metabolism of the amino acid. Glutamate is accumulated by the cells via a binding protein-dependent system. To determine the role of the binding protein and transport in glutamate taxis, mutants were created by Tn 5 insertion mutagenesis and selected for growth in the presence of the toxic glutamine analogue γ-glutamyl-hydrazide. One of the mutants, R. sphaeroides MJ7, was defective in glutamate uptake but showed wild-type levels of binding protein. The mutant showed no chemotactic response to glutamate. Both glutamate uptake and chemotaxis were recovered when the gltP gene, coding for the H+-linked glutamate carrier of E. coli , was expressed in R. sphaeroides MJ7. It is concluded that the chemotactic response to glutamate strictly requires uptake of glutamate, supporting the view that intracellular metabolism is needed for chemotaxis in R. sphaeroides .  相似文献   

2.
Rhodobacter sphaeroides only showed chemotaxis towards ammonia if grown under nitrogen-limited conditions. This chemotactic response was completely inhibited by the addition of methionine sulfoximine. There was no effect of methionine sulfoximine treatment on motility or taxis towards propionate, demonstrating that the effect is specific to ammonia taxis. It is known that methionine sulfoximine inhibits glutamine synthetase and hence blocks ammonia assimilation. Methionine sulfoximine does not inhibit ammonia transport in R. sphaeroides; therefore, these results suggest that limited metabolism via a specific pathway is required subsequent to transport to elicit a chemotactic response to ammonia. Bacteria grown on high ammonia show transport but no chemotactic response to ammonia, suggesting that the pathway of assimilation is important in eliciting a chemotactic response.  相似文献   

3.
Tethered rotating cells of Rhodobacter sphaeroides varied widely in their stopping frequency; 45% of cells showed no stops of longer than 1 s, whereas others showed stops of up to several seconds. Individual cells alternated between stops and rotation at a fairly constant rate, without continuous variation. Addition of the chemoattractant propionate to free-swimming cells of R. sphaeroides increased the mean population swimming speed from 15 to 23 microns s-1. After correction for nonmotile cells, the percentage swimming at less than 5 microns s-1 dropped from approximately 22 to 8, whereas the percentage swimming at greater than 50 microns s-1 increased from 6 to 15. However, cells already swimming did not swim faster after propionate addition; the increase in the mean population speed after propionate addition was caused by an increase in the mean run length between stops from 25 to 101 microns. The increased run length was the result of a drop in both the stopping frequency and the length of a stop. Addition of propionate over the range of 10 microM to 1 mM decreased the stopping frequency; this decrease was almost entirely blocked by benzoate, a competitive inhibitor of propionate transport. The chemoattractants acetate and potassium had the same effect as propionate on the distribution of stopping frequency, which demonstrated that this is a general behavioral response to chemotactic stimulation. Adaptation to propionate stimulation was slow and very variable, cultures frequently showing little adaptation over 30 min. This characteristic may be the result of the lack of a highly specific chemosensory system in R. sphaeroides.  相似文献   

4.
The involvement of protein kinase C in chemotaxis of normal dermal fibroblasts to a mitogenic and a non-mitogenic attractant was investigated. Neomycin, an inhibitor of phosphoinositide metabolism, H7, staurosporine, and sphingosine, inhibitors of protein kinase C, as well as amiloride, an inhibitor of the Na+/H+-antiport, all abrogated chemotaxis of fibroblasts to platelet-derived growth factor and to a chemotactically active fragment of fibronectin. Down-regulation of protein kinase C by phorbol ester likewise diminished the capacity of fibroblasts to move directionally to these attractants. Therefore, all three of these signal transduction steps are required for the chemotactic response of this type of cells.  相似文献   

5.
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations (~105 CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.  相似文献   

6.
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations ( approximately 10(5) CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.  相似文献   

7.
Changes in the membrane potential, pH gradient, proton motive force, and intracellular pH of Escherichia coli were followed during the chemotactic responses to a variety of potentially membrane-active compounds. Lipophilic weak acids, decreases in extracellular pH, and nigericin each caused a repellent response. Lipophilic weak bases, increases in extracellular pH, and valinomycin in the presence of K+ each caused an attractant response. Changes in membrane potential, pH gradient, and proton motive force did not correlate with the behavioral responses to these treatments, but changes in intracellular pH did correlate. Furthermore, the strength of the response to a weak acid was correlated with the magnitude of the change of the intracellular pH, and many compounds which could alter the intracellular pH were found to be chemotactically active. Apparently these attractants and repellents are not detected by specific chemoreceptors but rather are detected via the ability of cells to sense and respond to changes in intracellular pH. The pathway of sensory transduction which proceeds through methyl-accepting chemotaxis protein I was found to be involved in the response to a change in intracellular pH.  相似文献   

8.
Rhodobacter sphaeroides cells were tethered by their flagella and subjected to increasing and decreasing nutrient gradients. Using motion analysis, changes in flagellar motor rotation were measured and the responses of the cells to the chemotactic gradients were determined. The steepness and concentration ranges of increasing and decreasing gradients were varied, and the bacterial responses were measured. This allowed the limits of gradients that would invoke changes in flagellar behavior to be determined and thus predicts the nature of gradients that would evoke chemotaxis in the environment. The sensory threshold was measured at 30 nM, and the response showed saturation at 150 microM. The study determined that cells detected and responded to changing concentration rates as low as 1 nM/s for acetate and 5 nM/s for succinate. The complex sensory system of R. sphaeroides responded to both increasing and decreasing concentration gradients of attractant with different sensitivities. In addition, transition phases involving changes in the motor speed and the smoothness of motor rotation were found.  相似文献   

9.
Effect of temperature on Pseudomonas fluorescens chemotaxis.   总被引:2,自引:0,他引:2       下载免费PDF全文
The effects of temperature and attractants on chemotaxis in psychrotrophic Pseudomonas fluorescens were examined using the Adler capillary assay technique. Several organic acids, amino acids, and uronic acids were shown to be attractants, whereas glucose and its oxidation products, gluconate and 2-ketogluconate, elicited no detectable response. Chemotaxis toward many attractants was dependent on prior growth of the microorganism with these compounds. However, the organic acids, malate and succinate, caused strong chemotactic responses regardless of the carbon source used for growth of the bacteria. The temperature at which the cells were grown (30 or 5 degrees C) had no significant detectable effect on chemotaxis to the above attractants. The temperature at which the cells were assayed appeared to affect the rate but the extent of the chemotactic response, nor the concentration response curves. The ratios of the rate of accumulation of cells to the attractant malate were approximately 2, 4, and 1 at 30, 17, and 5 degrees C, respectively. Strong chemotactic responses were observed with cells assayed at temperatures approaching 0 degree C and appeared to be functional over a broad temperature range of 3 to 35 degrees C.  相似文献   

10.
It is well established that the response regulator of the chemotaxis system of Escherichia coli, CheY, can undergo acetylation at lysine residues 92 and 109 via a reaction mediated by acetyl-CoA synthetase (Acs). The outcome is activation of CheY, which results in increased clockwise rotation. Nevertheless, it has not been known whether CheY acetylation is involved in chemotaxis. To address this question, we examined the chemotactic behaviour of two mutants, one lacking the acetylating enzyme Acs, and the other having an arginine-for-lysine substitution at residue 92 of CheY - one of the acetylation sites. The Deltaacs mutant exhibited much reduced sensitivity to chemotactic stimuli (both attractants and repellents) in tethering assays and greatly reduced responses in ring-forming, plug and capillary assays. Likewise, the cheY(92KR) mutant had reduced sensitivity to repellents in tethering assays and a reduced response in capillary assays. However, its response to the addition or removal of attractants was normal. These observations suggest that Acs-mediated acetylation of CheY is involved in chemotaxis and that the acetylation site Lys-92 is only involved in the response to repellents. The observation that, in the cheY(92KR) mutant, the addition of a repellent was not chemotactically equivalent to the removal of an attractant also suggests that there are different signalling pathways for attractants and repellents in E. coli.  相似文献   

11.
Rhodobacter sphaeroides exhibits two behavioral responses when exposed to some compounds: (i) a chemotactic response that results in accumulation and (ii) a sustained increase in swimming speed. This latter chemokinetic response occurs without any apparent long-term change in the size of the electrochemical proton gradient. The results presented here show that the chemokinetic response is separate from the chemotactic response, although some compounds can induce both responses. Compounds that caused only chemokinesis induced a sustained increase in the rate of flagellar rotation, but chemoeffectors which were also chemotactic caused an additional short-term change in both the stopping frequency and the duration of stops and runs. The response to a change in chemoattractant concentration was a transient increase in the stopping frequency when the concentration was reduced, with adaptation taking between 10 and 60 s. There was also a decrease in the stopping frequency when the concentration was increased, but adaptation took up to 60 min. The nature and duration of both the chemotactic and chemokinetic responses were concentration dependent. Weak organic acids elicited the strongest chemokinetic responses, and although many also caused chemotaxis, there were conditions under which chemokinesis occurred in the absence of chemotaxis. The transportable succinate analog malonate caused chemokinesis but not chemotaxis, as did acetate when added to a mutant able to transport but not grow on acetate. Chemokinesis also occurred after incubation with arsenate, conditions under which chemotaxis was lost, indicating that phosphorylation at some level may have a role in chemotaxis. Aspartate was the only chemoattractant amino acid to cause chemokinesis. Glutamate caused chemotaxis but not chemokinesis. These data suggest that (i) chemotaxis and chemokinesis are separate responses, (ii) metabolism is required for chemotaxis but not chemokinesis, (iii) a reduction in chemoattractant concentration may cause the major chemotactic signal, and (iv) a specific transport pathway(s) may be involved in chemokinetic signalling in R. sphaeroides.  相似文献   

12.
Signal processing in complex chemotaxis pathways   总被引:1,自引:0,他引:1  
Bacteria use chemotaxis to migrate towards environments that are better for growth. Chemoreceptors detect changes in attractant levels and signal through two-component systems to control swimming direction. This basic pathway is conserved across all chemotactic bacteria and archaea; however, recent work combining systems biology and genome sequencing has started to elucidate the additional complexity of the process in many bacterial species. This article focuses on one of the best understood complex networks, which is found in Rhodobacter sphaeroides and integrates sensory data about the external environment and the metabolic state of the cell to produce a balanced response at the flagellar motor.  相似文献   

13.
Methanol production during chemotaxis to amino acids in Bacillus subtilis   总被引:5,自引:4,他引:1  
The 20 common amino acids act as attractants during chemotaxis by the Gram-positive organism Bacillus subtilis . In this study, we report that all amino acids induce B. subtilis to produce methanol both upon addition and removal of the chemoeffector. Asparagine-induced methanol production is specific to the McpB receptor and aspartate-induced methanol production correlates with receptor occupancy. These findings suggest that addition and removal of all amino acids cause demethylation of specific receptors which results in methanol production. We also demonstrate that certain attractants cause greater production of methanol after multiple stimulations. CheC and CheD, while affecting the levels of receptor methylation, are not absolutely required for either methylation or demethylation. In contrast, CheY is necessary for methanol formation upon removal of attractant but not upon addition of attractant. We conclude that methanol formation due to negative stimuli indicates the existence of a unique adaptational mechanism in B. subtilis involving the response regulator, CheY.  相似文献   

14.
The chemotactic response of the nematode Caenorhabditis elegans is known to be affected by the population density on an assay plate, suggesting the existence of interactions between individual animals. To clarify the interactions between individuals during chemotaxis, we investigated the effect of population density at an attractant area on the chemotactic response to water-soluble sodium acetate and odorant diacetyl using wild-type N2 animals and daf-22 (m130) mutants, which have defective pheromone secretion but can sense pheromone. The chemotaxis index of N2 animals at 90 min of the assay negatively correlated with the number of animals on the assay plate regardless of the type of attractant used (p<0.01). On the other hand, there was no significant difference in the chemotaxis indices of daf-22 (m130) mutants for either of the attractants between the low-and high-population groups. When daf-22 (m130) mutants of a high population density were placed at the attractant location in advance, the chemotaxis index of N2 animals was almost the same as that in the control assay in which no animals were placed at the attractant location in advance. When N2 animals of a high population density were placed at the attractant location in advance, the chemotaxis indices of N2 animals and daf-22 (m130) mutants were significantly smaller than those obtained in the control assay (p<0.05). In the absence of an attractant, we observed a decline in the fraction of animals in the neighborhood of N2 animals of a high population density, although the nematodes were not influenced by daf-22 (m130) mutants of a high population density. These results suggest that the attraction of nematodes to chemicals is inhibited by an increase in the concentration of the pheromone generated by N2 animals at the attractant location.  相似文献   

15.
The chemotactic behavior of the nematode Caenorhabditis elegans to chemical attractants, water-soluble sodium acetate and odorant diacetyl, was investigated using nematodes at various developmental stages to examine the effects of postembryonic development on chemotactic response and spontaneous locomotion. The chemotactic responses to attractants increased as development progressed, and the largest responses to either 1.0 M sodium acetate or 0.1% diacetyl were seen at the young adult (YA) or day adult (A1) stage, respectively. Responses to the chemicals declined thereafter in-line with increasing age. The chemotaxis indices for attractants correlated with activity of spontaneous locomotion (p<0.01), suggesting that a change in spontaneous locomotion is one of the factors involved with the change in chemotactic responses during development. We also investigated the effect of aging on attractant choice by the simultaneous presentation of 0.6 M sodium acetate and 0.1% diacetyl. In the presence of both attractants, the fraction of larval animals at the sodium acetate location was greater than that at the diacetyl location (p<0.05). The fractions of YA animals that gathered at either location were almost identical, whereas the fraction of adult animals at the diacetyl location was greater than that at the sodium acetate location (p<0.05). The patterns of attractant choice of the long-lived daf-2 mutants and short lifespan mev-1 mutants showed the same tendency as those of wild type nematodes in the presence of both attractants. These results suggest that a change in the neuronal mechanisms controlling attractant choice and preference occurs during developmental progression.  相似文献   

16.
Aromatic acids are chemoattractants for Pseudomonas putida   总被引:21,自引:10,他引:11       下载免费PDF全文
A quantitative capillary assay was used to show that aromatic acids, compounds that are chemorepellents for Escherichia coli and Salmonella sp., are chemoattractants for Pseudomonas putida PRS2000. The most effective attractants were benzoate; p-hydroxybenzoate; the methylbenzoates; m-, p-, and o-toluate; salicylate; DL-mandelate; beta-phenylpyruvate; and benzoylformate. The chemotactic responses to these compounds were inducible. Taxis to benzoate and m-toluate was induced by beta-ketoadipate, a metabolic intermediate formed when benzoate is dissimilated via enzymes specified by chromosomal genes. Benzoylformate taxis was induced by benzoylformate and L(+)-mandelate. Taxis to mandelate, benzoylformate, and beta-phenylpyruvate was exhibited by cells grown on mandelate, but not by cells grown on benzoate. Cells grown on benzoate were chemotactic to benzoate, the toluates, p-hydroxybenzoate, and salicylate. These results show that P. putida synthesizes at least two distinct chemoreceptors for aromatic acids. Although DL-mandelate was an effective attractant in capillary assays, additional experiments indicated that the cells were actually responding to benzoylformate, a metabolite formed from mandelate. With the exception of mandelate taxis, chemotaxis to aromatic acids was not dependent on the expression of pathways for aromatic degradation. Therefore, the tactic responses exhibited by cells cannot be attributed to an effect of the oxidation of aromatic acids on the energy metabolism of cells.  相似文献   

17.
We have engineered the chemotaxis system of Escherichia coli to respond to molecules that are not attractants for wild‐type cells. The system depends on an artificially introduced enzymatic activity that converts the target molecule into a ligand for an E. coli chemoreceptor, thereby enabling the cells to respond to the new attractant. Two systems were designed, and both showed robust chemotactic responses in semisolid and liquid media. The first incorporates an asparaginase enzyme and the native E. coli aspartate receptor to produce a response to asparagine; the second uses penicillin acylase and an engineered chemoreceptor for phenylacetic acid to produce a response to phenylacetyl glycine. In addition, by taking advantage of a ‘hitchhiker’ effect in which cells producing the ligand can induce chemotaxis of neighboring cells lacking enzymatic activity, we were able to design a more complex system that functions as a simple microbial consortium. The result effectively introduces a logical ‘AND’ into the system so that the population only swims towards the combined gradients of two attractants.  相似文献   

18.
Pseudomonas putida is attracted to at least two groups of aromatic acids: a benzoate group and a benzoylformate group. Members of the benzoate group of chemoattractants stimulated the methylation of a P. putida polypeptide with an apparent molecular weight of 60,000 in sodium dodecyl sulfate-polyacrylamide gels. This polypeptide is presumed to be a methyl-accepting chemotaxis protein for several reasons: its molecular weight is similar to the molecular weights of Escherichia coli methyl-accepting chemotaxis proteins, the amount of time required to attain maximal methylation correlated with the time needed for behavioral adaptation of P. putida cells to benzoate, and methylation was stimulated by benzoate only in cells induced for chemotaxis to benzoate. Also, a mutant specifically defective in benzoate taxis failed to show any stimulation of methylation upon addition of benzoate. Benzoylformate did not stimulate protein methylation in cells induced for benzoylformate chemotaxis, suggesting that sensory input from this second group of aromatic-acid attractants is processed through a different kind of chemosensory pathway. The chemotactic responses of P. putida cells to benzoate and benzoylformate were not sensitive to external pH over a range (6.2 to 7.7) which would vary the protonated forms of these weak acids by a factor of about 30. This indicates that detection of cytoplasmic pH is not the basis for aromatic-acid taxis in P. putida.  相似文献   

19.
A method is described for assaying chemotaxis in the acellular slime mold Physarum polycephalum. It consists of measuring the amount of plasmodium that moves on a strip of nitrocellulose membrane filter Millipore in response to a gradient of an attractant. Time course of chemotactic response of the slime mold is described. Different factors that affect chemotaxis in the slime mold such as: culture care and stage of growth of microplasmodia, substratum used for cell movement, nature of the gradient, effect of salts, pH and temperature are described. From concentration-response curves for different attractants several parameters of the chemotactic effect, such as threshold concentration, half maximal concentration, and maximal effective concentration can be determined. As a group, sugars are more effective chemotactic agents than amino acids. Glucose and galactose, which support the growth of the slime mold, are shown to have high positive chemotactic effect. 3-O-Methyl- -glucose and 2-deoxy- -glucose are two sugars that do not support growth but are very effective attractants. Conversely, fructose which supports slime mold growth is at best a weak attractant. The results support the view that the chemotactic effects of different sugars are not dependent on their growth-supporting value.  相似文献   

20.
In Escherichia coli, seven of the commonly occurring amino acids are strong attractants: L-aspartate, L-serine, L-glutamate, L-alanine, L-asparagine, glycine, and L-cysteine, in order of decreasing effectiveness. The chemotactic response to each amino acid attractant is mediated by either methyl-accepting chemotaxis protein I or II, but not by both. Seven of the commonly occurring amino acids are repellents. This work was carried out with chemically synthesized amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号