首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   

2.
We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces.  相似文献   

3.
α-Ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and α-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the α-ketoglutarate-dependent dioxygenases and share the specific motif HXDX24TX131HX10R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 μM for (R)-mecoprop, 164 μM for (R)-dichlorprop, and 3 μM for α-ketoglutarate for RdpA and 132 μM for (S)-mecoprop, 495 μM for (S)-dichlorprop, and 20 μM for α-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 μM for SdpA and >230 μM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace α-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAα-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.  相似文献   

4.
Pyrobaculum aerophilum, a hyperthermophilic archaeon, can respire either with low amounts of oxygen or anaerobically with nitrate as the electron acceptor. Under anaerobic growth conditions, nitrate is reduced via the denitrification pathway to molecular nitrogen. This study demonstrates that P. aerophilum requires the metal oxyanion WO42− for its anaerobic growth on yeast extract, peptone, and nitrate as carbon and energy sources. The addition of 1 μM MoO42− did not replace WO42− for the growth of P. aerophilum. However, cell growth was completely inhibited by the addition of 100 μM MoO42− to the culture medium. At lower tungstate concentrations (0.3 μM and less), nitrite was accumulated in the culture medium. The accumulation of nitrite was abolished at higher WO42− concentrations (<0.7 μM). High-temperature enzyme assays for the nitrate, nitrite, and nitric oxide reductases were performed. The majority of all three denitrification pathway enzyme activities was localized to the cytoplasmic membrane, suggesting their involvement in the energy metabolism of the cell. While nitrite and nitric oxide specific activities were relatively constant at different tungstate concentrations, the activity of nitrate reductase was decreased fourfold at WO42− levels of 0.7 μM or higher. The high specific activity of the nitrate reductase enzyme observed at low WO42− levels (0.3 μM or less) coincided with the accumulation of nitrite in the culture medium. This study documents the first example of the effect of tungstate on the denitrification process of an extremely thermophilic archaeon. We demonstrate here that nitrate reductase synthesis in P. aerophilum occurs in the presence of high concentrations of tungstate.  相似文献   

5.

Background

Stilbene-based compounds show antitumoral, antioxidant, antihistaminic, anti-inflammatory and antimicrobial activities. Here, we evaluated the effect of the trans-resveratrol analogs, pterostilbene, piceatannol, polydatin and oxyresveratrol, against Leishmania amazonensis.

Methodology/Principal Findings

Our results demonstrated a low murine macrophage cytotoxicity of all four analogs. Moreover, pterostilbene, piceatannol, polydatin and oxyresveratrol showed an anti-L. amazonensis activity with IC50 values of 18 μM, 65 μM, 95 μM and 65 μM for promastigotes, respectively. For intracellular amastigotes, the IC50 values of the analogs were 33.2 μM, 45 μM, 29 μM and 30.5 μM, respectively. Among the analogs assayed only piceatannol altered the cell cycle of the parasite, increasing 5-fold the cells in the Sub-G0 phase and decreasing 1.7-fold the cells in the G0-G1 phase. Piceatannol also changed the parasite mitochondrial membrane potential (ΔΨm) and increased the number of annexin-V positive promastigotes, which suggests incidental death.

Conclusion/Significance

Among the analogs tested, piceatannol, which is a metabolite of resveratrol, was the more promising candidate for future studies regarding treatment of leishmaniasis.  相似文献   

6.
Denitrification in San Francisco Bay Intertidal Sediments   总被引:23,自引:17,他引:6       下载免费PDF全文
The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3 + NO2 concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3 + NO2 concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).  相似文献   

7.
Kinetic Parameters of Denitrification in a River Continuum   总被引:4,自引:0,他引:4       下载免费PDF全文
Kinetic parameters for nitrate reduction in intact sediment cores were investigated by using the acetylene blockage method at five sites along the Swale-Ouse river system in northeastern England, including a highly polluted tributary, R. Wiske. The denitrification rate in sediment containing added nitrate exhibited a Michaelis-Menten-type curve. The concentration of nitrate for half-maximal activity (Kmap) by denitrifying bacteria increased on passing downstream from 13.1 to 90.4 μM in the main river, but it was highest (640 μM) in the Wiske. The apparent maximal rate (Vmaxap) ranged between 35.8 and 324 μmol of N m−2 h−1 in the Swale-Ouse (increasing upstream to downstream), but it was highest in the Wiske (1,194 μmol N m−2 h−1). A study of nitrous oxide (N2O) production at the same time showed that rates ranged from below the detection limit (0.05 μmol of N2O-N m−2 h−1) at the headwater site to 27 μmol of N2O-N m−2 h−1 at the downstream site. In the Wiske the rate was up to 570 μmol of N2O-N m−2 h−1, accounting for up to 80% of total N gas production.  相似文献   

8.
A model cocontaminated system was developed to determine whether a metal-complexing biosurfactant, rhamnolipid, could reduce metal toxicity to allow enhanced organic biodegradation by a Burkholderia sp. isolated from soil. Rhamnolipid eliminated cadmium toxicity when added at a 10-fold greater concentration than cadmium (890 μM), reduced toxicity when added at an equimolar concentration (89 μM), and had no effect at a 10-fold smaller concentration (8.9 μM). The mechanism by which rhamnolipid reduces metal toxicity may involve a combination of rhamnolipid complexation of cadmium and rhamnolipid interaction with the cell surface to alter cadmium uptake.  相似文献   

9.
Exposure of the leaf canopy of corn seedlings (Zea mays L.) to atmospheric CO2 levels ranging from 100 to 800 μl/l decreased nitrate accumulation and nitrate reductase activity. Plants pretreated with CO2 in the dark and maintained in an atmosphere containing 100 μl/l CO2 accumulated 7-fold more nitrate and had 2-fold more nitrate reductase activity than plants exposed to 600 μl/l CO2, after 5 hours of illumination. Induction of nitrate reductase activity in leaves of intact corn seedlings was related to nitrate content. Changes in soluble protein were related to in vitro nitrate reductase activity suggesting that in vitro nitrate reductase activity was a measure of in situ nitrate reduction. In longer experiments, levels of nitrate reductase and accumulation of reduced N supported the concept that less nitrate was being absorbed, translocated, and assimilated when CO2 was high. Plants exposed to increasing CO2 levels for 3 to 4 hours in the light had increased concentrations of malate and decreased concentrations of nitrate in the leaf tissue. Malate and nitrate concentrations in the leaf tissue of seven of eight corn genotypes grown under comparable and normal (300 μl/l CO2) environments, were negatively correlated. Exposure of roots to increasing concentrations of potassium carbonate with or without potassium sulfate caused a progressive increase in malate concentrations in the roots. When these roots were subsequently transferred to a nitrate medium, the accumulation of nitrate was inversely related to the initial malate concentrations. These data suggest that the concentration of malate in the tissue seem to be related to the accumulation of nitrate.  相似文献   

10.
This study investigated whether KMUP-1, a xanthine-derivative K+ channel opener, could prevent serotonin-induced hypertrophy in H9c2 cardiomyocytes via L-type Ca2+ channels (LTCCs). Rat heart-derived H9c2 cells were incubated with serotonin (10 μM) for 4 days. The cell size increased by 155.5%, and this was reversed by KMUP-1 (≥1 μM), and attenuated by the LTCC blocker verapamil (1 μM) and the 5-HT2A antagonist ketanserin (0.1 μM), but unaffected by the 5-HT2B antagonist SB206553. A perforated whole-cell patch-clamp technique was used to investigate Ca2+ currents through LTCCs in serotonin-induced H9c2 hypertrophy, in which cell capacitance and current density were increased. The LTCC current (ICa,L) increased ~2.9-fold in serotonin-elicited H9c2 hypertrophy, which was attenuated by verapamil and ketanserin, but not affected by SB206553 (0.1 μM). Serotonin-increased ICa,L was reduced by KMUP-1, PKA and PKC inhibitors (H-89, 1 μM and chelerythrine, 1 μM) while the current was enhanced by the PKC activator PMA, (1 μM) but not the PKA activator 8-Br-cAMP (100 μM), and was abolished by KMUP-1. In contrast, serotonin-increased ICa,L was blunted by the PKG activator 8-Br-cGMP (100 μM), but unaffected by the PKG inhibitor KT5823 (1 μM). Notably, KMUP-1 blocked serotonin-increased ICa,L but this was partially reversed by KT5823. In conclusion, serotonin-increased ICa,L could be due to activated 5-HT2A receptor-mediated PKA and PKC cascades, and/or indirect interaction with PKG. KMUP-1 prevents serotonin-induced H9c2 cardiomyocyte hypertrophy, which can be attributed to its PKA and PKC inhibition, and/or PKG stimulation.  相似文献   

11.
Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.  相似文献   

12.
13.
The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. The concentrations of nitrate and uranium were in the ranges of 0.1 μM to 230 mM and <0.2 nM to 580 μM, respectively. Almost all metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notable exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Moreover, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for two Pseudomonas strains isolated from ORR wells and by a model denitrifier, Pseudomonas stutzeri RCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed.  相似文献   

14.
A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sulphate and 11.84 μM silver nitrate. Elongated shoots were harvested and successful rooting of microshoots achieved on MS media supplemented with 9.84 μM IBA, with 81.1 % rooting. Remaining shoot buds sub-cultured for further multiplication and elongation. Each subculture produced eight to nine elongated microshoots up to four subcultures. The rooted microshoots were successfully hardened and transferred to field.  相似文献   

15.
Poaceae plants release phytosiderophores into the rhizosphere in order to chelate iron (Fe), which often exists in insoluble forms especially under high pH conditions. The impact of phytosiderophore treatment at the physiological and molecular levels in vivo remains largely elusive, although the biosynthesis of phytosiderophores and the transport of phytosiderophore-metal complexes have been well studied. We recently showed that the application of 30 μM of the chemically synthesized phytosiderophore 2′-deoxymugineic acid (DMA) was sufficient for apparent full recovery of otherwise considerably reduced growth of hydroponic rice seedlings at high pH. Moreover, unexpected induction of high-affinity nitrate transporter gene expression as well as nitrate reductase activity indicates that the nitrate response is linked to Fe homeostasis. These data shed light on the biological relevance of DMA not simply as a Fe chelator, but also as a trigger that promotes plant growth by reinforcing nitrate assimilation.  相似文献   

16.
Caged antisense oligodeoxynucleotides (asODNs) are synthesized by linking two ends of linear oligodeoxynucleotides using a photocleavable linker. Two of them (H30 and H40) have hairpin-like structures which show a large difference in thermal stability (ΔTm = 17.5°C and 11.6°C) comparing to uncaged ones. The other three (C20, C30 and C40) without stable secondary structures have the middle 20 deoxynucleotides complementary to 40-mer RNA. All caged asODNs have restricted opening which provides control over RNA/asODN interaction. RNase H assay results showed that 40-mer RNA digestion could be photo-modulated 2- to 3-fold upon light-activation with H30, H40, C30 and C40, while with C20, RNA digestion was almost not detectable; however, photo-activation triggered >20-fold increase of RNA digestion. And gel shift assays showed that it needed >0.04 μM H40 and 0.5 μM H30 to completely bind 0.02 μM 40-mer RNA, and for C40 and C30, it needed >0.2 μM and 0.5 μM for 0.02 μM 40-mer RNA binding. However, even 4 μM C20 was not able to fully bind the same concentration of 40-mer RNA. By simple adjustment of ring size of caged asODNs, we could successfully photoregulate their hybridization with mRNA and target RNA hydrolysis by RNase H with light activation.  相似文献   

17.
The nitrate-regulated promoter of narG in Escherichia coli was fused to promoterless ice nucleation (inaZ) and green fluorescent protein (GFP) reporter genes to yield the nitrate-responsive gene fusions in plasmids pNice and pNgfp, respectively. While the promoter of narG is normally nitrate responsive only under anaerobic conditions, the L28H-fnr gene was provided in trans to enable nitrate-dependent expression of these reporter gene fusions even under aerobic conditions in both E. coli DH5α and Enterobacter cloacae EcCT501R. E. cloacae and E. coli cells containing the fusion plasmid pNice exhibited more than 100-fold-higher ice nucleation activity in cultures amended with 10 mM sodium nitrate than in nitrate-free media. The GFP fluorescence of E. cloacae cells harboring pNgfp was uniform at a given concentration of nitrate and increased about 1,000-fold when nitrate increased from 0 to 1 mM. Measurable induction of ice nucleation in E. cloacae EcCT501R harboring pNice occurred at nitrate concentrations of as low as 0.1 μM, while GFP fluorescence was detected in cells harboring pNgfp at about 10 μM. In the rhizosphere of wild oat (Avena fatua), the whole-cell bioreporter E.cloacae(pNgfp) or E. cloacae(pNice) expressed significantly higher GFP fluorescence or ice nucleation activity when the plants were grown in natural soils amended with nitrate than in unamended natural soils. Significantly lower nitrate abundance was detected by the E. cloacae(pNgfp) reporter in the A. fatua rhizosphere compared to in bulk soil, indicating plant competition for nitrate. Ice- and GFP-based bacterial sensors thus are useful for estimating nitrate availability in relevant microbial niches in natural environments.  相似文献   

18.
Strain UHM-5, a pSym- Exo- derivative of the aluminum-tolerant Rhizobium leguminosarum bv. phaseoli strain CIAT899, was equally tolerant of aluminum (Al) as the parental culture. Dialyzed culture supernatants of the wild-type cells grown in YEM broth (109 cells ml-1) contained 185 μg of glucose equivalents ml-1 whereas UHM-5 culture supernatants yielded 2 μg of glucose ml-1. The Exo- derivative and the parental strain gave essentially similar growth in medium containing from 0 to 300 μM Al, indicating that the pSym of CIAT899, and extracellular polysaccharide, were not involved in the aluminum tolerance of this strain. However, increasing the level of Al from 80 to 150 μM increased the lag phase, induced a slight killing of the inoculum, and depressed the final populations by about fivefold. Doubling the aluminum concentration from 150 to 300 μM presented a severe aluminum stress to CIAT899 and UHM-5: the inoculum level dropped 10-fold, indicating killing of the inoculum, and remained depressed for ca. 4 days before continuing to grow slowly; the final population was decreased 15-fold relative to that of cultures grown in medium containing 80 μM Al. The production by CIAT899 of other extracellular or intracellular aluminum tolerance factors was investigated in culture by using aluminum-sensitive rhizobia as stress indicators. These experiments, conducted at 80 μM Al, demonstrated that CIAT899 produced neither extracellular nor intracellular products that could alleviate toxicity for the Al-sensitive indicator rhizobia.  相似文献   

19.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.  相似文献   

20.
Mn2+ exerted various effects on the growth of Leptothrix discophora strain SS-1 in batch cultures depending on the concentration added to the medium. Concentrations of 0.55 to 5.5 μM Mn2+, comparable to those in the environment from which strain SS-1 was isolated, decreased cell yield and prolonged stationary-phase survival, but did not affect growth rate. Elevated concentrations of 55 to 910 μM Mn2+ also decreased cell yield and prolonged survival, but growth rate was decreased as well. The addition of 1,820 μM Mn2+ caused a decline in cell numbers followed by an exponential rise after 80 h of incubation, indicating the development of a population of cells resistant to Mn2+ toxicity. When 360 μM Mn2+ or less was added to growth flasks, Mn2+ was oxidized to manganese oxide (MnOx, where x is ~2), which appeared as brown particles in the medium. Quantification of Mn oxidation during growth of cultures to which 55 μM Mn2+ was added showed that nearly all of the Mn2+ was oxidized by the beginning of the stationary phase of growth (15 to 25 h). This result suggested that the decrease in cell yield observed at low and moderate concentrations of Mn2+ was related to the formation of MnOx, which may have bound cationic nutrients essential to the growth of SS-1. The addition of excess Fe3+ to cultures containing 55 μM Mn2+ increased cell yield to levels near those found in cultures with no added Mn2+, indicating that iron deprivation by MnOx was at least partly responsible for the decreased cell yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号