首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for construction of adenovirus vectors   总被引:40,自引:0,他引:40  
Adenoviruses are attracting increasing attention as general purpose mammalian cell expression vectors, as recombinant vaccines, and potentially as vectors for gene therapy. Not only is the adenovirus genome relatively easy to manipulate by recombinant DNA techniques, but adenovirus vectors are relatively stable, grow to high titers, and can transduce a variety of cell types in cell culture and in vivo. Vectors can be designed that are either replication competent or replication defective and, in the latter case, are highly efficient at delivering and expressing genes in mammalian cells without resulting in cell killing. Methods are described for growing, titrating, and purifying adenoviruses, for extracting viral DNA from purified virions and from infected cells, for rescuing inserts of foreign DNA into the viral genome, and for assessing expression of inserted genes in adenovirus vectors.  相似文献   

2.
Activity of the yeast FLP recombinase in Arabidopsis   总被引:3,自引:0,他引:3  
The coding sequence for FLP recombinase, originally from the 2 plasmid of Saccharomyces cerevisiae, was introduced into Arabidopsis behind the cauliflower mosaic virus 35S promoter. FLP activity was monitored by the glucuronidase activity resulting from inversion of an antisense-oriented GUS reporter gene flanked by a pair of FRT target sites in inverted repeat. FLP-dependent Gus activity was observed in both transient assays and transgenic plants. The FLP system will be useful for a variety of in planta genetic manipulations.  相似文献   

3.
Protein transduction is based on the ability of certain peptides, designated as cell penetrating peptides (CPPs), to intracellularly deliver cargo molecules, such as peptides and proteins. In combination with site specific recombination, CPP-mediated delivery of recombinases enables a precise and highly efficient control of gene expression in cultured cells and mice. Herein, we provide detailed protocols for engineering and purification of a cell-permeant FLP recombinase protein. Two examples describe the use of cell permeant FLP for excising prespecified fragments from transgenes expressed in fibroblasts and mouse embryonic stem cells. A third example describes the combined use of cell-permeant Cre and FLP recombinases to reversibly induce transgenes in embryonic stem cells. We anticipate that the protocols described herein will be widely used for various genetic interventions addressing complex biological questions.  相似文献   

4.
FLP and Cre recombinase function in Xenopus embryos   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

5.
6.
Identification of the DNA-binding domain of the FLP recombinase   总被引:6,自引:0,他引:6  
We have subjected the FLP protein of the 2-micron plasmid to partial proteolysis by proteinase K and have found that FLP can be digested into two major proteinase K-resistant peptides of 21 and 13 kDa, respectively. The 21-kDa peptide contains a site-specific DNA-binding domain that binds to the FLP recognition target (FRT) site with an affinity similar to that observed for the native FLP protein. This peptide can induce DNA bending upon binding to a DNA fragment containing the FRT site, but the angle of the bend (approximately 24 degrees) is smaller in magnitude than that induced by the native FLP protein (60 degrees). The additional DNA bending induced by the interaction between two native FLP molecules bound to the FRT site is not observed with the 21-kDa DNA-binding peptide. Amino-terminal sequencing has been used to map this peptide to an internal region of FLP that begins at residue Leu-148. It is likely that the DNA-binding peptide includes the catalytic site of the FLP protein.  相似文献   

7.
8.
A binary system for gene activation and site specific integration based on conditional recombination of transfected sequences mediated by FLP recombinase from yeast was implemented in mammalian cells. In several cell lines, FLP rapidly and precisely recombined copies of its specific target sequences to activate an otherwise silent beta-galactosidase reporter gene. Clones of marked cells were generated by excisional recombination within a chromosomally integrated copy of the silent reporters. These clones exhibited intense blue colour with X-Gal staining solution.  相似文献   

9.
Activity of yeast FLP recombinase in maize and rice protoplasts.   总被引:19,自引:2,他引:19       下载免费PDF全文
We have demonstrated that a yeast FLP/FRT site-specific recombination system functions in maize and rice protoplasts. FLP recombinase activity was monitored by reactivation of beta-glucuronidase (GUS) expression from vectors containing the gusA gene inactivated by insertion of two FRTs (FLP recombination targets) and a 1.31 kb DNA fragment. The stimulation of GUS activity in protoplasts cotransformed with vectors containing FRT inactivated gusA gene and a chimeric FLP gene depended on both the expression of the FLP recombinase and the presence and structure of the FRT sites. The FLP enzyme could mediate inter- and intramolecular recombination in plant protoplasts. These results provide evidence that a yeast recombination system can function efficiently in plant cells, and that its performance can be manipulated by structural modification of the FRT sites.  相似文献   

10.
Stephan J  Stemmer V  Niederweis M 《Gene》2004,343(1):181-190
Mycobacteria contain a large number of redundant genes whose functions are difficult to analyze in mutants, because there are only two efficient resistance markers available for allelic exchange experiments. We have established a system based on the Flp recombinase of the yeast Saccharomyces cerevisiae for use in the nonpathogenic model organism Mycobacterium smegmatis. This system consists of a hygromycin resistance cassette flanked by two Flp recognition targets (FRT) in direct orientation and a curable plasmid for expression of the flp gene. The FRT-hyg-FRT cassette was used on a suicide plasmid and on a conditionally replicating plasmid to delete two of the four known porin genes of M. smegmatis, mspA and mspC, respectively, by homologous recombination. The hyg gene was specifically removed from the chromosome of both mutants upon expression of the flp gene. Based on the marker-less mspC mutant strain, a double knock-out mutant lacking also mspA was obtained using the same strategy. Thus, by a fast and efficient two-step procedure, each of the porin genes was replaced by a single FRT site, which can be further used for site-specific integration. These results show that the Flp/FRT system is a suitable genetic tool for constructing unmarked mutations and for the analysis of redundant genes by consecutive gene deletions in M. smegmatis.  相似文献   

11.
A recombinant adenovirus (rAd) expressing Cre recombinase derived from bacteriophage P1 has already been extensively used for the conditional gene activation and inactivation strategies in mammalian systems. In this study, we generated AxCAFLP, a rAd expressing FLP recombinase derived from Saccharomyces cerevisiae and carried out quantitative comparisons with Cre-expressing rAd in both in vitro and in cultured cells to provide another efficient gene regulation system in mammalian cells. In the in vitro experiments, the relative recombination efficiency of FLP expressed in 293 cells infected with FLP-expressing rAd was approximately one-thirtieth that of Cre even at 30 degrees C, the optimum temperature for FLP activity, and was approximately one-ninetieth at 37 degrees C. Co-infection experiments in HeLa cells using a target rAd conditionally expressing LacZ under the control of FLP showed that an FLP-expressing rAd, infected at a multiplicity of infection (MOI) of 5, was able to activate the transgene in almost 100% of HeLa cells whereas the Cre-expressing rAd was sufficient at an MOI of 0.2. Since an MOI of 5 is ordinarily used in rAd experiments, these results showed that the FLP-expressing rAd is useful for gene activation strategies and is probably applicable to a sequential gene regulation system in combination with Cre-expressing rAd in mammalian cells.  相似文献   

12.
13.
K G Golic  S Lindquist 《Cell》1989,59(3):499-509
We have transferred the site-specific recombination system of the yeast 2 micron plasmid, the FLP recombinase and its recombination targets (FRTs), into the genome of Drosophila. Flies were transformed with an FLP gene under the control of hsp70 regulatory sequences and with a white gene flanked by FRTs. The heat-induced recombinase catalyzes recombination between FRTs, causing loss of white (seen somatically as white patches in the eye) and, less frequently, gain of white (seen as dark-red patches). Loss and gain frequencies vary with the severity of the heat shock, and patterns of mosaicism vary with the developmental stage at which the heat shock is applied. The recombinase is also active in the germline, producing white-eyed and dark-red-eyed progeny.  相似文献   

14.
The FLP recombinase of the 2 microns plasmid of Saccharomyces cerevisiae is a member of the integrase family of site-specific recombinases. Recombination catalyzed by members of this family proceeds via the ordered cleavage and religation of four strands of DNA. Although the amino acid sequences of integrase family members are quite different, each recombinase maintains an absolutely conserved tetrad of amino acids (R-191, H-305, R-308, Y-343; numbers are those of the FLP protein). This tetrad is presumed to reflect a common chemical mechanism for cleavage and ligation that has evolved among all family members. The tyrosine is the nucleophile that causes phosphodiester bond cleavage and covalently attaches to the 3'-PO4 terminus, whereas the other three residues have been implicated in ligation of strands. It has recently been shown that cleavage by FLP takes place in trans; that is, a FLP molecule binds adjacent to the site of cleavage but receives the nucleophilic tyrosine from a molecule of FLP that is bound to another FLP-binding element (J.-W. Chen, J. Lee, and M. Jayaram, Cell 69:647-658, 1992). These studies led us to examine whether the ligation step of the FLP reaction is performed by the FLP molecule bound adjacent to the cleavage site (ligation in cis). We have found that FLP promotes ligation in cis. Furthermore, using in vitro complementation analysis, we have classified several mutant FLP proteins into one of two groups: those proteins that are cleavage competent but ligation deficient (group I) and those that are ligation competent but cleavage defective (group II). This observation suggests that the active site of FLP is composed of several amino acid residues from each of two FLP molecules.  相似文献   

15.
16.
Body weight regulation is mediated through several major signaling pathways, some of which have been delineated by positional cloning of spontaneous genetic mutations in mice. Leprdb/db mice are obese due to a defect in the signaling portion of the leptin receptor, which has led to extensive study of this highly conserved system over the past several years. We have created an allelic series at Lepr for the further examination of LEPR signaling phenotypes using both the FLP/frt and CRE/loxP systems. By inserting a frt-PGK-neo-frt sequence in Lepr intron 16, we have generated a conditional gene repair Lepr allele (Lepr-neo) that elicits morbid obesity, diabetes, and infertility in homozygous mice, recapitulating the obesity syndrome of Leprdb/db mice. Thus, in vivo excision of the PGK-neo cassette with a FLP recombinase transgene restores the lean and fertile phenotype to Leprflox/flox mice. In the same construct, we have also inserted loxP sites that flank Lepr coding exon 17, a region that encodes a JAK docking site required for STAT3 signaling. CRE-mediated excision of Lepr coding exon 17 from Lepr with a frameshift in subsequent exons results in a syndrome of obesity, diabetes, and infertility in Lepr17/17 mice, which is indistinguishable from Leprneo/neo and Leprdb/db mice. We conclude that suppression of Lepr gene expression by PGK-neo is phenotypically equivalent to deletion of the Lepr signaling motifs, and therefore the Leprneo/neo mouse may be used to investigate conditional gene repair of Lepr signaling deficiency.  相似文献   

17.
BACKGROUND: The high affinity Fcgamma receptor I (FcgammaRI; aka CD64) is expressed by dendritic cells (DC) and antigens targeted to this receptor elicit enhanced immune responses. This study was designed to test the hypothesis that targeting an adenoviral (Ad) vector to FcgammaRI would lead to enhanced transduction of DC and an improved immune response to vector-encoded antigens. METHODS: A bispecific adaptor molecule consisting of a trimeric adenovirus fiber-binding moiety fused to a single-chain antibody specific for human FcgammaRI was generated. Transduction of cultured cells, including human DC, by the FcgammaRI-targeted Ad was then evaluated using reporter genes (GFP, luciferase). Immunophenotypic and functional characteristics of vector-transduced DC were also measured by flow cytometry, cytokine ELISA and mixed lymphocyte reaction (MLR); antigen-specific stimulation of autologous CD8(+) T cells was evaluated using vectors encoding cytomegalovirus (CMV) pp65. RESULTS: FcgammaRI-targeted Ad transduced primary DC with 10-15-fold greater efficiency than unmodified Ad or Ad vectors complexed to an adaptor protein that targeted an irrelevant receptor. However, FcgammaRI-targeting had no effect of Ad-induced activation of DC, as measured by cytokine release or expression of cell surface activation markers. Finally, FcgammaRI-targeting of vectors encoding CMV pp65 resulted in an increase in the activation of antigen-specific autologous human CD8(+) T cells. CONCLUSIONS: FcgammaRI-targeting significantly enhances the efficiency of Ad vector-mediated gene transfer in primary human DC, and results in an improved immune response to a vector-encoded antigen.  相似文献   

18.
The human vitamin D3 receptor (hVDR) cDNA was cloned into the E1 region of the adenovirus genome to generate recombinant viruses which were used to infect 293 (adenovirus-transformed human fetal kidney) cells. High salt extracts from cells infected with the recombinant viruses were subjected to immunoblot analysis using a monoclonal antibody to chicken VDR and were shown to contain large quantities of a protein of approximately 50 kDa with a migration identical to that of the hVDR in T47D (human mammary adenocarcinoma) cells. Scatchard analysis showed that the infected cells express approximately 100-fold more receptor than T47D cells and that this receptor binds 1,25-dihydroxyvitamin D3 with high affinity. The overexpressed hVDR also binds to DNA-cellulose and is eluted with a KCl concentration similar to that determined for fully active endogenous VDR. Nuclear extracts from cells infected with the hVDR-expressing adenoviruses contain an activity that specifically binds an oligonucleotide with sequences from the rat osteocalcin vitamin D3 response element, as determined by gel mobility shift. This interaction can be inhibited by the presence of an anti-VDR antibody, but not by nonspecific immunoglobulins. We conclude, therefore, that the overexpressed receptor has the ligand- and DNA-binding characteristics defined for endogenous VDR and that adenoviruses can be used to efficiently express large quantities of functional hVDR in a human cell line. Finally, a second binding activity, specific for the vitamin D response element, but distinct from the VDR, has been identified in extracts from uninfected cells.  相似文献   

19.
The site-specific recombinase (FLP) encoded by the yeast plasmid 2 micron circle belongs to the integrase (of phage lambda) family of recombinases. The sparse homology within the members of this family contrasts with the invariance of three residues, His-396, Arg-399, and Tyr-433 (the numbers correspond to the family alignment positions), among them. We report here results on substrate recognition and catalysis by FLP proteins altered at these residues. Mutations of the conserved His and Tyr that aborted the reaction at specific steps of catalysis permitted genetic dissection of the possible biochemical steps of recombination. We provide indirect evidence that recombination by FLP proceeds through a Holliday junction intermediate.  相似文献   

20.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of the FLP protein and two inverted recombination sites on the plasmid. The minimal fully functional substrate for in-vitro recombination in this system consists of two FLP protein binding sites separated by an eight base-pair spacer sequence. We have used site-directed mutagenesis to generate every possible mutation (36 in all) within 11 base-pairs of one FLP protein binding site and the base-pair immediately flanking it. The base-pairs within the binding site can be separated into three classes on the basis of these results. Thirty of the 36 sequence changes, including all three at seven different positions (class I) produce a negligible or modest effect on FLP protein-promoted recombination. In particular, most transition mutations are well-tolerated in this system. In only one case do all three possible mutations produce large effects (class II). At three positions, clustered near the site at which DNA is cleaved by FLP protein, one of the two possible transversions produces a large effect on recombination, while the other two changes produce modest effects (class III). For seven mutants for which FLP protein binding was measured, a direct correlation between decreases in recombination activity and in binding was observed. Positive effects on the reaction potential of mutant sites are observed when the other FLP binding site in a single recombination site is unaltered or when the second recombination site in a reaction is wild-type. This suggests a functional interaction between FLP binding sites both in cis and in trans. When two mutant recombination sites (each with 1 altered FLP binding site) are recombined, the relative orientation of the mutations (parallel or antiparallel) has no effect on the result. These results provide an extensive substrate catalog to complement future studies in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号