首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents methodology for the construction of a linkage map in an autotetraploid species, using either codominant or dominant molecular markers scored on two parents and their full-sib progeny. The steps of the analysis are as follows: identification of parental genotypes from the parental and offspring phenotypes; testing for independent segregation of markers; partition of markers into linkage groups using cluster analysis; maximum-likelihood estimation of the phase, recombination frequency, and LOD score for all pairs of markers in the same linkage group using the EM algorithm; ordering the markers and estimating distances between them; and reconstructing their linkage phases. The information from different marker configurations about the recombination frequency is examined and found to vary considerably, depending on the number of different alleles, the number of alleles shared by the parents, and the phase of the markers. The methods are applied to a simulated data set and to a small set of SSR and AFLP markers scored in a full-sib population of tetraploid potato.  相似文献   

2.
In this paper we demonstrate how molecular markers segregating in a full-sib autotetraploid mapping population can be ordered to form a linkage map using simulated annealing. This approach facilitates the examination of orders close to the optimum to see which marker placings are fixed and identify the markers whose position is less certain. A simulation study investigates the effects of population size, marker spacing, ratio of dominant to codominant markers, typing errors and missing values. The method is applied to map 30 amplified fragment length polymorphism and microsatellite markers on linkage group IV of potato.  相似文献   

3.
Allozyme and PCR-based molecular markers have been widely used to investigate genetic diversity and population genetic structure in autotetraploid species. However, an empirical but inaccurate approach was often used to infer marker genotype from the pattern and intensity of gel bands. Obviously, this introduces serious errors in prediction of the marker genotypes and severely biases the data analysis. This article developed a theoretical model to characterize genetic segregation of alleles at genetic marker loci in autotetraploid populations and a novel likelihood-based method to estimate the model parameters. The model properly accounts for segregation complexities due to multiple alleles and double reduction at autotetrasomic loci in natural populations, and the method takes appropriate account of incomplete marker phenotype information with respect to genotype due to multiple-dosage allele segregation at marker loci in tetraploids. The theoretical analyses were validated by making use of a computer simulation study and their utility is demonstrated by analyzing microsatellite marker data collected from two populations of sycamore maple (Acer pseudoplatanus L.), an economically important autotetraploid tree species. Numerical analyses based on simulation data indicate that the model parameters can be adequately estimated and double reduction is detected with good power using reasonable sample size.  相似文献   

4.
The cultivated potato (Solanum tuberosum L.) is an autotetraploid species. The complexity of tetrasomic inheritance and the lack of pure lines increase the difficulty of genetic analysis of the inherited characteristics. Tuberization is the determinant step for economic yield of potato. To understand the complex genetic basis of tuberization of the cultivated potato, we developed linkage maps for a tetraploid population (F1) of 237 genotypes and mapped QTLs for the percent of in vitro tuberized plantlets (% IVT). The paternal map for E108 (well tuberized) covered 948 cM and included 12 linkage groups, all of which contained all four homologous chromosomes. The maternal map for E20 (nontuberized) covered 1,286 cM and included 14 linkage groups, 12 of which contained all four homologous chromosomes. All 12 chromosomes of potato were tagged using the SSR markers. A major QTL (MT05) with additive effect was detected on chromosome V of E108 which explained 16.23 % of the variation for % IVT, and two minor QTLs (mt05 and mt09) displaying simplex dominant effects were located on chromosome V and chromosome IX of E20 which explained 5.33 and 4.59 % of the variation for % IVT, respectively. Based on the additive model of MT05, the segregation ratio of the gametic genotypes (Q?: qq = 5:1) matched the ratio of the tuberized genotypes to the nontuberized genotypes in the population suggesting that the segregation of in vitro tuberization in this population is controlled by a major-effect gene or genes. The mapping results of three important candidate genes indicated that the QTL causal genes detected in our study are new. In this study, we developed the almost complete linkage maps of a tetraploid population, identified a major QTL on chromosome V affecting in vitro tuberization, suggested a major-effect gene with minor modifiers model controlling this trait and found that the QTLs identified here correspond to new tuberization genes. Our work provides new and useful information about the genetic basis for tuberization of this autotetraploid crop.  相似文献   

5.
The creation of genetic linkage maps in polyploid species has been a long-standing problem for which various approaches have been proposed. In the case of autopolyploids, a commonly used simplification is that random bivalents form during meiosis. This leads to relatively straightforward estimation of recombination frequencies using maximum likelihood, from which a genetic map can be derived. However, autopolyploids such as tetraploid potato (Solanum tuberosum L.) may exhibit additional features, such as double reduction, not normally encountered in diploid or allopolyploid species. In this study, we produced a high-density linkage map of tetraploid potato and used it to identify regions of double reduction in a biparental mapping population. The frequency of multivalents required to produce this degree of double reduction was determined through simulation. We also determined the effect that multivalents or preferential pairing between homologous chromosomes has on linkage mapping. Low levels of multivalents or preferential pairing do not adversely affect map construction when highly informative marker types and phases are used. We reveal the double-reduction landscape in tetraploid potato, clearly showing that this phenomenon increases with distance from the centromeres.  相似文献   

6.
The mode of inheritance in tetraploid cut roses   总被引:2,自引:0,他引:2  
Tetraploid hybrid tea roses (Rosa hybrida) represent most of the commercial cultivars of cut roses and form the basis for breeding programmes. Due to intensive interspecific hybridizations, modern cut roses are complex tetraploids for which the mode of inheritance is not exactly known. The segregation patterns of molecular markers in a tetraploid mapping population of 184 genotypes, an F(1) progeny from a cross of two heterozygous parents, were investigated for disomic and tetrasomic inheritance. The possible occurrence of double reduction was studied as well. We can exclude disomic inheritance, but while our observations are more in line with a tetrasomic inheritance, we cannot exclude that there is a mixture of both inheritance modes. Two novel parental tetraploid linkage maps were constructed using markers known from literature, combined with newly generated markers. Comparison with the integrated consensus diploid map (ICM) of Spiller et al. (Theor Appl Genet 122:489-500, 2010) allowed assigning numbers to each of the linkage groups of both maps and including small linkage groups. So far, the possibility of using marker-assisted selection in breeding of tetraploid cut roses and of other species with a tetrasomic or partly tetrasomic inheritance, is still limited due to the difficulties in establishing marker-trait associations. We used these tetraploid linkage maps to determine associations between markers, two morphological traits and powdery mildew resistance. The knowledge on inheritance and marker-trait associations in tetraploid cut roses will be of direct use to cut rose breeding.  相似文献   

7.
Population structure parameters commonly used for diploid species are reexamined for the particular case of tetrasomic inheritance (autotetraploid species). Recurrence equations that describe the evolution of identity probabilities for neutral genes in an "island model" of population structure are derived assuming tetrasomic inheritance. The expected equilibrium value of FST is computed. In contrast to diploids, the correlation of genes between individuals within populations with respect to genes between populations (FST) may vary among loci due to the particular segregation patterns expected under tetrasomic inheritance and is consequently inappropriate for estimating demographic parameters in such populations. We thus define a new parameter (rho) and derive its relationship with Nm. This relationship is shown to be independent from both the selfing rate and the proportion of double reduction. Finally, the statistical procedure required to evaluate these parameters using data on gene frequencies distribution among autotetraploid populations is developed.  相似文献   

8.
Lotus corniculatus is a tetraploid (2n=4x=24) perennial forage legume and has been reported to have tetrasomic inheritance for several traits, although it has also been reported to show disomic inheritance. Molecular markers were used to clarify whether tetrasomic inheritance, disomic inheritance, or a combination of both, was found within an F2 population arising from a cross between two diverse L. corniculatus accessions. The inheritance of ”tetra-allelic” RFLP markers (markers with four segregating bands) indicated that disomic inheritance could not account for the phenotypic F2 classes observed, and that only tetrasomic inheritance would explain the observed results. Goodness of fit tests for ”tetra-allelic” and ”tri-allelic” (three segregating bands) RFLP marker data suggested support for chromosomal-type tetrasomic inheritance. RFLP genotypes interpreted from autoradiographic signal intensity provided additional support for tetrasomic inheritance and the occurrence of preferential pairing between parental chromosomes. Bivalent pairing was predominant in the two parental lines and their F1 hybrid in cytological analyses. L. corniculatus has been classified as both an autotetraploid and an allotetraploid species. RFLP evidence of tetrasomic inheritance gives support for L. corniculatus being classified as an autotetraploid species. Even though bivalent pairing occurs, as seen in other autotetraploid species, pairing between any of the four homologous chromosomes is possible. Preferential pairing in the F1 hybrid suggests that genome differentiation appears to be minimal between homologs within an accession, while genome differentiation is greater between homologs from different accessions of this genetically diverse species. Received: 16 November 1999 / Accepted: 14 July 2000  相似文献   

9.
A genetic map of potato (Solanum tuberosum) was constructed based on 293 restriction fragment length polymorphism (RFLP) markers including 31 EST markers of Arabidopsis. The in silico comparison of all marker sequences with the Arabidopsis genomic sequence resulted in 189 markers that detected in Arabidopsis 787 loci with sequence conservation. Based on conserved linkage between groups of at least three different markers on the genetic map of potato and the physical map of Arabidopsis, 90 putative syntenic blocks were identified covering 41% of the potato genetic map and 50% of the Arabidopsis physical map. The existence and distribution of syntenic blocks suggested a higher degree of structural conservation in some parts of the potato genome when compared to others. Syntenic blocks were redundant: most potato syntenic blocks were related to several Arabidopsis genome segments and vice versa. Some duplicated potato syntenic blocks correlated well with ancient segmental duplications in Arabidopsis. Syntenic relationships between different genomic segments of potato and the same segment of the Arabidopsis genome indicated that potato genome evolution included ancient intra- and interchromosomal duplications. The partial genome coveridge and the redundancy of syntenic blocks limits the use of synteny for functional comparisons between the crop species potato and the model plant Arabidopsis.  相似文献   

10.
Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid crop species, and this creates challenges for traditional line development and molecular breeding. Recent availability of a single-nucleotide polymorphism (SNP) array with 8303 features and software packages for linkage and association mapping in autotetraploid species present new opportunities for the identification of genomic regions that contribute to high-value traits in cultivated potato. A biparental tetraploid potato population was evaluated across three field seasons and storage trials in order to identify quantitative trait loci (QTL) for multiple tuber traits including fried chip color after 5.5–7.2 °C storage. Tetra-allelic dosage information was used to construct a genetic linkage map that covered 1041 cM and contained 2095 SNP markers with a median marker interval of 0.4 cM. A total of 41 QTL were identified for flower color, tuber yield, tuber number per plant, tuber weight, tuber size, and chip color after various storage regimes. Moderate effect QTL for chip color at 3 months were identified that co-localized with candidate genes vacuolar invertase (VInv), invertase inhibitor (INH2), and apoplastic invertase (Inv ap -b). A separate QTL for chip color after 6 months of storage was identified in the short arm of chromosome 2, and this locus may contribute to variation in senescent sweetening resistance. QTL for tuber weight, length, and width co-localized with a known QTL for plant maturity on chromosome 5. Genome-wide association mapping using a polyploid model detected the tuber size QTL and identified a number of candidate SNPs, but was unable to detect markers significantly associated with chip color.  相似文献   

11.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops with high seed oil quality. The first sesame genetic linkage map based on F2 segregating population of an intraspecific cross between two cultivars was constructed. Using three types of PCR-based markers, 284 polymorphic loci including 10 EST-SSR marker, 30 AFLP marker and 244 RSAMPL marker, respectively, had been screened. Subsequently, a total of 220 molecular markers were mapped in 30 linkage groups covering a genetic length of 936.72 cM, and the average distance between markers was 4.93 cM. In this map, the linkage groups contained from 2 to 33 loci each and ranged in distance from 6.44 cM to 74.52 cM. Based on map information, sesame genome length was estimated to be approximately 1,232.53 cM, and genome coverage of this map was about 76.0%. As a starting point of sesame genome study, the genetic linkage map will be hopeful to tag traits of breeding interest and further aid in the sesame molecular breeding. Furthermore, RSAMPL marker had been also appreciated in this paper, for its first usage in genetic map construction and higher utilization potential in some crop species lacking much genome information.  相似文献   

12.
TetraploidMap: construction of a linkage map in autotetraploid species   总被引:2,自引:0,他引:2  
TetraploidMap is a suite of Fortran 90 routines run from Microsoft Windows with a text-based input and output. TetraploidMap enables the user to assemble a linkage map from dominant and codominant (multiallelic) marker loci scored for the parents and full-sib progeny of a cross in an autotetraploid species. It includes routines for the inference of the parental genotypes, identification of linkage groups, two-point analysis to estimate the recombination frequency and LOD score between all pairs of marker in a linkage group, and locus ordering by simulated annealing.  相似文献   

13.
Tetraploid inheritance has two extremes: disomic in allotetraploids and tetrasomic in autotetraploids. The possibility of mixed, or intermediate, inheritance models has generally been neglected. These could well apply to newly formed hybrids or to diploidizing (auto)tetraploids. We present a simple likelihood-based approach that is able to incorporate disomic, tetrasomic, and intermediate inheritance models and estimates the double-reduction rate. Our model shows that inheritance of microsatellite markers in natural tetraploids of Rorippa amphibia and R. sylvestris is tetrasomic, confirming their autotetraploid origin. However, in F(1) hybrids inheritance was intermediate to disomic and tetrasomic inheritance. Apparently, in meiosis, chromosomes paired preferentially with the homolog from the same parental species, but not strictly so. Detected double-reduction rates were low. We tested the general applicability of our model, using published segregation data. In two cases, an intermediate inheritance model gave a better fit to the data than the tetrasomic model advocated by the authors. The existence of inheritance intermediate to disomic and tetrasomic has important implications for linkage mapping and population genetics and hence breeding programs of tetraploids. Methods that have been developed for either disomic or tetrasomic tetraploids may not be generally applicable, particularly in systems where hybridization is common.  相似文献   

14.
Cultivated alfalfa (Medicago sativa) is an autotetraploid. However, all three existing alfalfa genetic maps resulted from crosses of diploid alfalfa. The current study was undertaken to evaluate the use of Simple Sequence Repeat (SSR) DNA markers for mapping in diploid and tetraploid alfalfa. Ten SSR markers were incorporated into an existing F2 diploid alfalfa RFLP map and also mapped in an F2 tetraploid population. The tetraploid population had two to four alleles in each of the loci examined. The segregation of these alleles in the tetraploid mapping population generally was clear and easy to interpret. Because of the complexity of tetrasomic linkage analysis and a lack of computer software to accommodate it, linkage relationships at the tetraploid level were determined using a single-dose allele (SDA) analysis, where the presence or absence of each allele was scored independently of the other alleles at the same locus. The SDA diploid map was also constructed to compare mapping using SDA to the standard co-dominant method. Linkage groups were generally conserved among the tetraploid and the two diploid linkage maps, except for segments where severe segregation distortion was present. Segregation distortion, which was present in both tetraploid and diploid populations, probably resulted from inbreeding depression. The ease of analysis together with the abundance of SSR loci in the alfalfa genome indicated that SSR markers should be a useful tool for mapping tetraploid alfalfa. Received: 10 September 1999 / Accepted: 11 November 1999  相似文献   

15.
Arnold B  Bomblies K  Wakeley J 《Genetics》2012,192(1):195-204
We develop coalescent models for autotetraploid species with tetrasomic inheritance. We show that the ancestral genetic process in a large population without recombination may be approximated using Kingman's standard coalescent, with a coalescent effective population size 4N. Numerical results suggest that this approximation is accurate for population sizes on the order of hundreds of individuals. Therefore, existing coalescent simulation programs can be adapted to study population history in autotetraploids simply by interpreting the timescale in units of 4N generations. We also consider the possibility of double reduction, a phenomenon unique to polysomic inheritance, and show that its effects on gene genealogies are similar to partial self-fertilization.  相似文献   

16.
RFLP maps of potato and their alignment with the homoeologous tomato genome   总被引:10,自引:0,他引:10  
Summary An RFLP linkage map of the potato is presented which comprises 304 loci derived from 230 DNA probes and one morphological marker (tuber skin color). The self-incompatibility locus of potato was mapped to chromosome I, which is homoeologous to tomato chromosome I. By mapping chromosome-specific tomato RFLP markers in potato and, vice versa, potato markers in tomato, the different potato and tomato RFLP maps were aligned to each other and the similarity of the potato and tomato genome was confirmed. The numbers given to the 12 potato chromosomes are now in accordance with the established tomato nomenclature. Comparisons between potato RFLP maps derived from different genetic backgrounds revealed conservation of marker order but differences in chromosome and total map length. In particular, significant reduction of map length was observed in interspecific compared to intraspecific crosses. The distribution of regions with distorted segregation ratios in the genome was analyzed for four potato parents. The most prominent distortion of recombination was found to be caused by the self-incompatibility locus.  相似文献   

17.
 Seventy eight clones from the cross between SCRI clone 12601ab1 and cv Stirling were used to explore the possibility of genetical linkage analysis in tetraploid potato (Solanum tuberosum subsp. tuberosum). Clone 12601ab1 had quantitative resistance to Globodera pallida Pa2/3 derived from S. tuberosum subsp. andigena. The strategy adopted involved identifying single- (simplex) and double- (duplex) dose AFLP markers in the parents from segregation ratios that could be unambiguously identified in their offspring, detecting linkage between a marker and a putative quantitative trait locus (QTL) for resistance, and placing the QTL on the linkage map of markers. The numbers of scorable segregating markers were 162 simplex ones present only in 12601ab1, 87 present in Stirling, and 32 present in both; and 72 duplex markers present only in 12601ab1 and 45 present in Stirling. The total map length was 990.9 cM in 12601ab1 and 484.6 cM in Stirling. A QTL with a resistance allele present in double dose (QQqq) in 12601ab1 was inferred from the associations between resistance scores (square root of female counts) and two duplex markers linked in coupling, which, in turn, were linked in coupling to four simplex markers also associated with resistance, but to a lesser degree. The largest marker class difference was the one for the duplex marker P61M34=15. It accounted for 27.8% of the phenotypic variance in resistance scores, or approximately 30% of the genotypic variance. Subsequently, this duplex marker was found to be linked in coupling with a duplex SSR allele Stm3016=a, whose locus was shown to be on chromosome IV in a diploid reference mapping population. The other QTLs for resistance segregating in the progeny were not identified for one or more of the following reasons: the markers did not cover the whole of the genome, there were unfavourable repulsion linkages between the QTLs and markers, or the gene effects were not large enough to be detected in an experiment of the size conducted. It is concluded that prospects appear good for detecting QTLs and using marker-assisted selection in a tetraploid potato breeding programme, provided that, in future, the population size is increased to over 250 and more SSR markers are used to complement the AFLPs; the same is likely to be true for other autotetraploid crops. Received: 16 December 1997 / Accepted: 4 March 1998  相似文献   

18.
We present several lines of evidence that chromosomes XIV and XVII of Saccharomyces cerevisiae are not independent chromosomes, but rather constitute a single linkage group. Studies which made use of a new mapping method based on the haploidization-without-recombination meiotic phenotype of the spoll mutant initially indicated that markers on chromosomes XIV and XVII were linked. Tetrad analysis was used to establish gene-gene distances, and a new chromosome XIV map incorporating markers originally assigned to chromosome XVII was derived. During the course of trisomic segregation studies, we discovered that a 2n + 2 homothallic diploid, originally believed to be tetrasomic for chromosome XVII (now XIV), carries two normal chromosome XIV homologs and two aberrant homologs which appear to be deficient for a large portion of the right arm of XIV. The previous evidence that established chromosome XVII as an independent linkage group is discussed in the light of these findings.  相似文献   

19.
Blackberry primocane fruiting, fruiting on first-year canes, has the potential to expand blackberry production both seasonally and geographically. The incorporation of the primocane-fruiting trait into cultivars with desirable horticultural attributes is challenging due to its recessive nature and tetrasomic inheritance. Molecular marker-assisted selection has high potential to facilitate incorporation, because breeders already use morphological marker-assisted selection of seedlings without marginal cotyledonary hairs to identify progeny that will be thornless when mature. The development of a genetic linkage map with these two traits is the first step to utilizing molecular markers in breeding for thornless primocane-fruiting blackberry cultivars. A full-sib family segregating for thornlessness and primocane fruiting, from a cross between ‘APF-12’ and ‘Arapaho’, was used to construct the first genetic map of tetraploid blackberry. Segregation patterns of several dominant markers and the two phenotypic traits fit those expected uniquely with tetrasomic inheritance (e.g., 5:1, 11:1 and 35:1). Some loci showed significant double reduction frequencies, but genotypes that could have originated only from double reduction were not found. The map consists of seven linkage groups (LG) in each parent, consistent with the basic number of chromosomes (2n = 4x = 28). Naming of LG1-LG6 followed that of the recently revised system for raspberry using SSR markers in common between blackberry and raspberry, and LG7 was tentatively defined by default. The loci controlling primocane fruiting and thornlessness were not linked to each other; thornless/thorny, the S Locus, was mapped on LG4, and the primocane-/floricane-fruiting locus, named in this work the F Locus, on LG7.  相似文献   

20.
A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)   总被引:20,自引:0,他引:20  
Androgenetic doubled haploid progeny produced from a cross between the Oregon State University and Arlee clonal rainbow trout (Oncorhynchus mykiss) lines, used for a previous published rainbow trout map, were used to update the map with the addition of more amplified fragment length polymorphic (AFLP) markers, microsatellites, type I and allozyme markers. We have added more than 900 markers, bringing the total number to 1359 genetic markers and the sex phenotype including 799 EcoRI AFLPs, 174 PstI AFLPs, 226 microsatellites, 72 VNTR, 38 SINE markers, 29 known genes, 12 minisatellites, five RAPDs, and four allozymes. Thirty major linkage groups were identified. Synteny of linkage groups in our map with the outcrossed microsatellite map has been established for all except one linkage group in this doubled haploid cross. Putative homeologous relationships among linkage groups, resulting from the autotetraploid nature of the salmonid genome, have been revealed based on the placement of duplicated microsatellites and type I loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号