首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 0.5 mT 50 Hz extremely low-frequency magnetic field (ELM) on the dendritic spine density and shape in the superficial layers of the medial entorhinal cortex (MEC). We performed Golgi staining to reveal the dendritic spines of the principal neurons in rats. The results showed that ELM exposure induced a decrease in the spine density in the dendrites of stellate neurons and the basal dendrites of pyramidal neurons at both 14 days and 28 days, which was largely due to the loss of the thin and branched spines. The alteration in the density of mushroom and stubby spines post ELM exposure was cell-type specific. For the stellate neurons, ELM exposure slightly increased the density of stubby spines at 28 days, while it did not affect the density of mushroom spines at the same time. In the basal dendrites of pyramidal neurons, we observed a significant decrease in the mushroom spine density only at the later time point post ELM exposure, while the stubby spine density was reduced at 14 days and partially restored at 28 days post ELM exposure. ELM exposure-induced reduction in the spine density in the apical dendrites of pyramidal neurons was only observed at 28 days, reflecting the distinct vulnerability of spines in the apical and basal dendrites. Considering the changes in spine number and shape are involved in synaptic plasticity and the MEC is a part of neural network that is closely related to learning and memory, these findings may be helpful for explaining the ELM exposure-induced impairment in cognitive functions.  相似文献   

2.
I M Kakabadze 《Tsitologiia》1985,27(10):1123-1128
The maturation of layers II-VI of neurons and perineuronal neuropil of the cat visual cortex (field 17) was studied from postnatal day 1 to day 21. The differentiation of large, small (associate) pyramid and stellate neurons was described. During the first postnatal week, the somata of layers II-VI of neurons undergo significant changes, the perikaryal cytoplasm increases in volume. Cell bodies of large pyramidal neurons mature by day 15. During the second postnatal week and almost till day 15, the rough endoplasmic reticulum of small pyramidal and stellate neurons undergoes proliferation; dendritic processes are branching. In stellate neurons the amount of cytoplasmic organelles increases dramatically only after the second postnatal week, and this is presumably induced by the opening of eyes on day 12. The second postnatal week is the period of greatest growth of dendritic, axonal and glial processes in perineural neuropil of layers V-VI. In the perineuronal neuropil of large pyramidal neurons (layers V-VI) there appear symmetric synapses with pyramidal cells, dendritic processes and dendritic spines. This occurs just at the time when kittens first open the eyes. From this time and during postnatal days 15-21, asymmetric synapses appear in the perineuronal neuropil of large pyramidal neurons. In the perineuronal neuropil of small pyramidal and stellate neurons. (layers II-IV), synapses reveal the mature appearance by day 15. After the opening of the eyes and up to postnatal day 21, dendritic growth and spine production occur in the perineuronal neuropil of small pyramidal and stellate neurons.  相似文献   

3.
V P Babmindra 《Tsitologiia》1978,20(9):1090-1091
The structure of marked associative pyramidal neurons, their dendrites, and spines in layer III of somato-sensory cortex in cats after HRP-injection into the motor cortex has been described. Secondary and tertiary branches of basal dendrites are revealed more often than the apical ones. But the spines, especially their heads, were more obvious on the apical dendrites. The marked associative neurons are displaced sparsely, making no accumulations.  相似文献   

4.
Summary The amygdaloid complex in the cat was studied in a series of Golgi preparations. Both the lateral and the basal nucleus are composed of the same two cell types, one of which (type P) resembles the pyramidal and the other (type S) the stellate neuron of the cortex. The cortical nucleus can be divided into three layers (I, II, and III–IV) which are made up of cells similar to those in the periamygdaloid cortex. In addition, there are sufficient differences in the organization of these layers to justify a subdivision of the cortical nucleus into lateral and medial parts. The dendrites of neurons in the medial part of the central nucleus, the medial nucleus and the anterior amygdaloid area undergo less branching and carry fewer spines than those of the type P cell. The neurons in the nucleus of the lateral olfactory tract are all of the pyramidal or modified pyramidal type. These findings are discussed in relation to those of previous investigators who employed the Nissl and Golgi methods.This investigation was supported by the Medical Research Council of Canada, Grant M.T. 870. The author wishes to thank Miss Elizabeth Korzeniowski for her technical assistance.  相似文献   

5.
Interneurons of motor area in the brain cortex have been studied in cats and monkeys. The greatest attention has been paid to pyramidal interneurons, among which six cell types have been described according to their axonal composition. Unlike stellate interneurons, all types of pyramidal interneurons possess less developed axonal collaterals. Interneuronal contacts are situated on dendrites or cell bodies of middle and large long-axonal pyramids. Functional role of cortical interneurons seems to be different. Some of them are of inhibitory nature (basket cells and, perhaps, other types of long-axonal stellate neurons), others are exciting elements. The latter include short-axonal stellate neurons and, perhaps, pyramidal interneurons. While comparing the cortex in cats and monkeys, it is evident that the neocortex in monkeys, especially its lower layers, is rich in pyramidal interneurons.  相似文献   

6.
Pyramidal, aspinous, sparsely-spinous bipolar and multipolar neurons of the rat sensomotor cerebral cortex, impregnated after Golgi method, have been studied at an electron microscopical level. The ultrastructural characteristics of the pyramidal neurons differs from that of the nonpyramidal cells. Distribution of various synaptic contacts on the cellular surface and cortical postsynaptic targets of the axonal arborizations of the neurons are revealed. On the body of the pyramidal cells only symmetrical synapses exist, on large dendritic trunks symmetrical synapses prevail, on the spines and the terminal dendritic branches assymetrical synapses mainly predominate. Axonal collateralies of the pyramidal cells form asymmetrical synapses on the spines, small and middle dendrites. There are more axo-somatic synapses on the bodies of the nonpyramidal neurons than on the pyramidal cells, among them both symmetrical and asymmetrical types of the synapses occur. On the trunks and small dendrites of the nonpyramidal cells both types of synaptic contacts are revealed. In the distal direction of the dendrites the number of the asymmetrical synapses becomes predominating. Axons of the bipolar cells form asymmetrical synapses on the spines, small and middle dendrites. Axons of the multipolar cells form symmetrical synapses on the dendrites and the dendritic trunks of the nondifferentiated cells. Differences in the distribution character of the synaptic inlets and various postsynaptic targets of the axonal systems in the cells assume various functional role of the identified neurons.  相似文献   

7.
The present study, based on neurohistological techniques (Nissl-staining, Golgi-impregnation), focuses on the cytoarchitecture of the corticoid complex in the strawberry finch, Estrilda amandava. This complex in birds occupies the dorsolateral surface of the telencephalic pallium and remains subdivided into an intermediate corticoid area (CI) and a dorsolateral corticoid area (CDL). The CDL in the strawberry finch is a thin superficial part of the caudal pallium adjoining the medially situated hippocampal formation, whereas the CI is demarcated between the CDL and the parahippocampal area of telencephalon. Neurons of the corticoid complex are classified into three main cell groups: predominant projection neurons, local circuit neurons and stellate neurons. The spinous projection neurons send out distant projecting axons that typically extend several varicose collaterals. Most of these collaterals lie parallel to the ventricle. These neurons are subclassified into pyramidal neurons (localized only in the CI) and multipolar neurons (present in both the CI and CDL). The CDL also possesses small and medium-sized horizontal cells, which are bitufted or multipolar with smooth, moderately branching dendrites. The aspinous local circuit neurons extend short axons that ramify locally. Stellate neurons have sparse spinous dendrites and locally arborizing axons. The corticoid complex of birds corresponds to the lateral cerebral cortex of lizards and to the entorhinal cortex of mammals on the basis of neuronal morphology and bidirectional connections between adjacent areas. This work is supported by a D. Phil. Fellowship under the UGC scheme awarded to P. Chand and by a CSIR Fellowship (F. no. 9/1 (270)/2004 — EMR-І) awarded to R.C. Maurya.  相似文献   

8.
The cerebral cortex of the echidna is notable for its extensive folding and the positioning of major functional areas towards its caudal extremity. The gyrification of the echidna cortex is comparable in magnitude to prosimians and cortical thickness and neuronal density are similar to that seen in rodents and carnivores. On the other hand, many pyramidal neurons in the cerebral cortex of the echidna are atypical with inverted somata and short or branching apical dendrites. All other broad classes of neurons noted in therian cortex are also present in the echidna, suggesting that the major classes of cortical neurons evolved prior to the divergence of proto- and eutherian lineages. Dendritic spine density on dendrites of echidna pyramidal neurons in somatosensory cortex and apical dendrites of motor cortex pyramidal neurons is lower than that found in eutheria. On the other hand, synaptic morphology, density and distribution in somatosensory cortex are similar to that in eutheria. In summary, although the echidna cerebral cortex displays some structural features, which may limit its functional capacities (e.g. lower spine density on pyramidal neurons), in most structural parameters (e.g. gyrification, cortical area and thickness, neuronal density and types, synaptic morphology and density), it is comparable to eutheria.  相似文献   

9.
Previous studies have shown that sensory and motor experiences play an important role in the remodeling of dendritic spines of layer 5 (L5) pyramidal neurons in the cortex. In this study, we examined the effects of sensory deprivation and motor learning on dendritic spine remodeling of layer 2/3 (L2/3) pyramidal neurons in the barrel and motor cortices. Similar to L5 pyramidal neurons, spines on apical dendrites of L2/3 pyramidal neurons are plastic during development and largely stable in adulthood. Sensory deprivation via whisker trimming reduces the elimination rate of existing spines without significant effect on the rate of spine formation in the developing barrel cortex. Furthermore, we show that motor training increases the formation and elimination of dendritic spines in the primary motor cortex. Unlike L5 pyramidal neurons, however, there is no significant difference in the rate of spine formation between sibling dendritic branches of L2/3 pyramidal neurons. Our studies indicate that sensory and motor learning experiences have important impact on dendritic spine remodeling in L2/3 pyramidal neurons. They also suggest that the rules governing experience‐dependent spine remodeling are largely similar, but not identical, between L2/3 and L5 pyramidal neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 277–286, 2016  相似文献   

10.
The present study was designed to examine the nerve growth factor (NGF) system (ligand and receptor-expressing neurons) in the somatosensory (areas 1, 3a, and 3b) and motor (area 4) cortices of the mature macaque. Light and electron microscope immunohistochemistry was used to assess the distribution and identity of NGF-, p75-, and trk-expressing elements. In each cortical area examined, NGF-positive neuronal somata were distributed through all laminae; most immunolabeled neurons were in layers II, III, and V. Based upon light microscope criteria (e.g., the morphology of proximal dendrites), both pyramidal and stellate neurons expressed NGF. Of the identifiable NGF- immunoreactive cells, 92% were pyramidal neurons and the remainder was stellate neurons. The electron microscope study showed that most (88%) NGF-positive somata formed symmetric synapses, whereas the others formed both symmetric and asymmetric synapses. As the somata of pyramidal neurons form only symmetric synapses and those of inhibitory stellate neurons form both symmetric and asymmetric somatic synapses, the ultrastructural data support the light microscopic analyses. In contrast, neurotrophin receptors, p75 and trk, were expressed chiefly by the cell bodies of layer V pyramidal neurons and the supragranular neuropil. At the ultrastructural level, receptor-positive profiles were post-synaptic elements (e.g., dendritic shafts and spines) and the concentration of immunoreactivity was greatest in the vicinity of post-synaptic densities. Thus, NGF regulatory systems parallel excitatory and inhibitory neurotransmitter systems. Cortex contains the morphological framework by which pyramidal and/or inhibitory stellate neurons can affect the activity of post-synaptic pyramidal neurons via anterograde and autocrine/paracrine NGF systems.  相似文献   

11.
The distribution and morphology of neurons containing three calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in the adult rabbit visual cortex were studied. The calcium-binding proteins were identified using antibody immunocytochemistry. Calbindin D28K-immunoreactive (IR) neurons were located throughout the cortical layers with the highest density in layer V. However, calbindin D28K-IR neurons were rarely encountered in layer I. Calretinin-IR neurons were mainly located in layers II and III. Considerably lower densities of calretinin-IR neurons were observed in the other layers. Parvalbumin-IR neurons were predominantly located in layers III, IV, V, and VI. In layers I and II, parvalbumin-IR neurons were only rarely seen. The majority of the calbindin D28K-IR neurons were stellate, round or oval cells with multipolar dendrites. The majority of calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicularly to the pial surface. The morphology of the majority of parvalbumin-IR neurons was similar to that of calbindin D28K: stellate, round or oval with multipolar dendrites. These results indicate that these three different calcium-binding proteins are contained in specific layers and cells in the rabbit visual cortex.  相似文献   

12.
Gap junctions have been found infrequently between two dendrites or a dendrite and a cell soma in the deep layers of both the motor and somatic sensory cortices of the primate. At these junctions the outer leaflets of the plasma membranes of both profiles are intimately apposed with a gap of 2 nm between them which shows a structure of hexagonal subunits in tangential sections. These gap junctions occur mainly between the dendrites or dendrites and somata of large stellate cells but are also associated in some examples with a dendro-dendritic synapse and thus occur between large stellate dendrites and presynaptic dendrites; a desmosome may also occur in association with a gap junction and dendro-dendritic synapse. Gap junctions have been identified as sites of electrical transmission between cells in a number of sites and it is therefore suggested that some neurons in the sensori-motor cortex are electrotonically couples.  相似文献   

13.
The neural circuit in the hippocampus is important for higher brain functions. Dendrites of CA1 pyramidal neurons mainly receive input from the axons of CA3 pyramidal neurons in this neural circuit. A CA1 pyramidal neuron has a single apical dendrite and multiple basal dendrites. In wild‐type mice, most of CA1 pyramidal neurons extend a single trunk, or alternatively, the apical dendrite bifurcates into two daughter trunks at the stratum radiatum layer. We previously reported the proximal bifurcation phenotype in Sema3A?/?, p35?/?, and CRMP4?/? mice. Cdk5/p35 phosphorylates CRMP2 at Ser522, and inhibition of this phosphorylation suppressed Sema3A‐induced growth cone collapse. In this study, we analyzed the bifurcation points of the apical dendrites of hippocampal CA1 pyramidal neurons in CRMP2KI/KI mice in which the Cdk5/p35‐phosphorylation site Ser522 was mutated into an Ala residue. The proximal bifurcation phenotype was not observed in CRMP2KI/KI mice; however, severe proximal bifurcation of apical dendrites was found in CRMP2KI/KI;CRMP4?/? mice. Cultured hippocampal neurons from CRMP2KI/KI and CRMP2KI/KI;CRMP4?/? embryos showed an increased number of dendritic branching points compared to those from wild‐type embryos. Sema3A increased the number of branching points and the total length of dendrites in wild‐type hippocampal neurons, but these effects of Sema3A for dendrites were notobserved in CRMP2KI/KI and CRMP2KI/KI;CRMP4?/?hippocampal neurons. Binding of CRMP2 to tubulin increased in both CRMP2KI/KI and CRMP2KI/KI:CRMP4?/? brain lysates. These results suggest that CRMP2 and CRMP4 synergistically regulate dendritic development, and CRMP2 phosphorylation is critical for proper bifurcation of apical dendrite of CA1 pyramidal neurons. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

14.
The morphology of cells and the organization of axons were studied in Golgi-Colonnier and toluidine blue stained preparations from the medial cerebral cortex of the lizard Lacerta pityusensis. In the medial cortex, six strata were distinguished between the superficial glial membrane and the ependyma. Strata I and II formed the outer plexiform layer, stratum III formed the cellular layer, and strata IV go VI the inner plexiform layer. The outer plexiform layer contained smooth bipolar neurons; their dendrites were oriented anteroposteriorly and their axons were directed towards the posterior zone of the brain. Five neuronal types were observed in the cellular layer. The spinous pyramidal neurons had well-developed apical dendrites and poorly developed basal ones. Their axons entered the inner plexiform layer and gave off collaterals oriented anteroposteriorly. The small, sparsely spinous pyramidal neurons had poorly developed dendrites and their axons entered the inner plexiform layer. The spinous bitufted neurons had well-developed apical and basal dendritic tufts. Their axons gave off collaterals that reached the outer and inner plexiform layers of both the dorsomedial and dorsal cortices. The sparsely spinous horizontal neurons had dendrites restricted to the outer plexiform layer. Their axons entered the inner plexiform layer. The sparsely spinous, multipolar neurons had their soma close to stratum IV and their axons entered the outer plexiform layer. In stratum V of the inner plexiform layer were large, spiny polymorphic neurons; they had dendrites with long spines, and their axons reached the cellular layer. On the basis of these results, we have subdivided the medial cortex into two subregions: the superficial region, which contains the neurons of the cellular layer and their dendritic domains, and the deep region, strata V and VI, which contains the large, spiny polymorphic neurons. The neurons in the medial cortex of these lizards resembles those in the area dentata of mammals. On this basis, the superficial region may be compared to the dentate gyrus and the deep region to the hilar region of the hippocampus of mammals.  相似文献   

15.
Apical dendrites of pyramidal neurons in the neocortex have a stereotypic orientation that is important for neuronal function. Neural recognition molecule Close Homolog of L1 (CHL1) has been shown to regulate oriented growth of apical dendrites in the mouse caudal cortex. Here we show that CHL1 directly associates with NB-3, a member of the F3/contactin family of neural recognition molecules, and enhances its cell surface expression. Similar to CHL1, NB-3 exhibits high-caudal to low-rostral expression in the deep layer neurons of the neocortex. NB-3-deficient mice show abnormal apical dendrite projections of deep layer pyramidal neurons in the visual cortex. Both CHL1 and NB-3 interact with protein tyrosine phosphatase alpha (PTPalpha) and regulate its activity. Moreover, deep layer pyramidal neurons of PTPalpha-deficient mice develop misoriented, even inverted, apical dendrites. We propose a signaling complex in which PTPalpha mediates CHL1 and NB-3-regulated apical dendrite projection in the developing caudal cortex.  相似文献   

16.
It was shown by the Golgi and Golgi-Kopsch method that pyramidal cells of layers II–IV in the frontal cortex of the monkeyMacaca rhesus have numeruous, mainly recurrent axon collaterals by means of which they form vertical connections. Pyramidal cells with ascending axons are found. Axons of stellate basket neurons unite pyramidal cells in both horizontal (modules) and vertical (micromodules) directions; depending on the direction of the axon collaterals, two groups of stellate neurons can be distinguished. Groups of 14 to 16 pyramidal cells whose apical dendrites are connected into bundles were found. Axons of pyramidal cells in layers II–IV descend in the composition of the pyramidal tract and give off collaterals which run toward the bodies and dendrites of neighboring pyramidal cells, united into the same group, forming terminal and en passant junctions. Besides bundles, special kinds of "local" cell groups with U-shaped axons are found.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 15, No. 2, pp. 115–120, March–April, 1983.  相似文献   

17.
Using Golgi techniques we have studied neuronal cell types in the anterior dorsal ventricular ridge (ADVR) of the adult lizard Gallotia galloti. Multipolar, bitufted, and juxtaependymal neuronal forms were found. The multipolar and bitufted neurons are present in both the periventricular and central ADVR zones. Multipolar neurons can be subdivided into multipolar neurons with polygonal somata and four to six main dendritic trunks and multipolar neurons with pyramidal somata and three or more dendritic trunks. The former are the cells most frequently impregnated in the ADVR. In the population of bitufted neurons, we distinguish subtypes I, II, and III according to the number of dendritic trunks that emerge from the somata. Juxtaependymal neurons are restricted to a cell-poor zone, adjacent to ependymal cells. Their dendrites either are orientated parallel to the ventricular surface or extend into the periventricular zone. The dendrites of ADVR neurons have pedunculated spines with knob-like tips. However, such spines do not appear on the somata or on the primary dendritic trunks. The number of spines is scarce or moderate. The periventricular neuronal clusters contain two to five cells. The morphology of these neurons is mainly multipolar, but we also found some bitufted neurons.  相似文献   

18.
Summary The development of neurons and their synapses of the mouse motor cortex has been studied from the first postnatal day up to an age of three weeks both electronmicroscopically and with the Golgi method. Special attention has been paid to the maturation of the different cell types in the sixth cortical layer and their dendritic organization within this layer.The polymorph layer is subdivided into two zones: an internal (VIb) and an external one (VIa). In these zones six different cell types can be identified both electronmicroscopically and with the Golgi method: large, small and inverted pyramidal cells in VIa; horizontal cells, star cells and small pyramidal cells in VIb.Spines of apical dendrites of large pyramidal cells in sublayer VIa can be detected as early as the 6th postnatal day. About the ninth day the basal dendrites as well show emerging spines. Somatic spines are found only on the large pyramidal cells and disappear slowly towards the end of the 3rd postnatal week.The small pyramidal cells show developing spines on their apical dendrite in the first half of the second postnatal week. The final density and distribution of spines is reached by the stem dendrites towards the end of the second week, by the basal dendrites during the third week. The maturation process of the improperly orientated neurons occurs in time in between the large and the small pyramidal cells.The axo-somatic synapses appear in general at a later date than the axo-dendritic ones. In the horizontal cells axo-somatic synapses are visible already at the seventh postnatal day.At the end of the first week especially in layer VIb many immature neurons with an ovoid or round nucleus are present having little if any endoplasmic reticulum organised as ergastoplasm.Towards the end of the second week however most neurons in the polymorph layer have a well developed endoplasmic reticulum.Electronmicroscopical pictures reveal in outgrowing dendrites many enlargements filled with vesicles, these correspond to the varicosities seen in Golgi pictures. At nine days postnatally the first myelinated fibres appear.Aided by grant (R-209-67) from the United Cerebral Palsy Research and Educational Foundation, New York.  相似文献   

19.
By means of histochemical methods for revealing +choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) cytoarchitectonic of the field 4 of the motor cortex of the cerebrum has been studied in 5 persons at the age of 33-65 years. An essential part of neurons at revealing AChE and most of them at revealing ChAT do not react. Among giant pyramidal neurons (Bets) according to ChAT activity, 4 types are distinguished: neurons with low, middle, high and very high activity. The presence of ChAT is ascertained in middle and large pyramidal neurons of the III layer. Presence of ChAT-positive synapses is demonstrated in apical dendrites. A conclusion is made that less part of the pyramidal in the III, V layers are cholinergic ones.  相似文献   

20.
We studied the distribution and morphology of calbindin D28K- and calretinin-immunoreactive (IR) neurons in the mouse visual cortex with immunocytochemistry. Most of the calbindin D28K-IR neurons were located in layers II/III and V, while calretinin-IR neurons were predominantly located in layers II/III. The labeled neurons showed variations in morphology. The majority of the calbindin D28K-IR neurons were stellate and round or oval cells with multipolar dendrites. The majority of calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. In the mouse visual cortex, 20.2% of calbindin D28K-IR neurons contained calretinin and 27.2% of calretinin-IR neurons contained calbindin D28K. These results indicate that the calcium-binding proteins, calbindin D28K and calretinin are distributed in specific layers and in selective cell types of the mouse visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号