首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed.  相似文献   

2.
Current models to study Legionella pathogenesis include the use of primary macrophages and monocyte cell lines, various free-living protozoan species and murine models of pneumonia. However, there are very few studies of Legionella spp. pathogenesis aimed at associating the role of biofilm colonization and parasitization of biofilm microbiota and release of virulent bacterial cell/vacuoles in drinking water distribution systems. Moreover, the implications of these environmental niches for drinking water exposure to pathogenic legionellae are poorly understood. This review summarizes the known mechanisms of Legionella spp. proliferation within Acanthamoeba and mammalian cells and advocates the use of the amoeba model to study Legionella pathogenicity because of their close association with Legionella spp. in the aquatic environment. The putative role of biofilms and amoebae in the proliferation, development and dissemination of potentially pathogenic Legionella spp. is also discussed. Elucidating the mechanisms of Legionella pathogenicity development in our drinking water systems will aid in elimination strategies and procedural designs for drinking water systems and in controlling exposure to Legionella spp. and similar pathogens.  相似文献   

3.
Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed.  相似文献   

4.
Application of flow cytometry to studies of pathogenic free-living amoebae   总被引:4,自引:0,他引:4  
Species of small, free-living amoebae of the genera Naegleria and Acanthamoeba can cause fatal amoebic meningoencephalitis. Previous investigations have shown that pathogenic amoebae are associated with thermally altered water. Flow cytometric techniques for identifying species of pathogenic and nonpathogenic amoebae from such water have been developed, using immunofluorescence and fluorescein-bound concanavalin A. Flow cytometry is accomplished with a cytofluorograph, in which cells are dispersed in a suspended carrier liquid and passed in front of a focused argon ion laser beam. Cells are then distinguished by the degree of scattered light (size) or fluorescence. Flow cytometry techniques have proven efficient for environmental samples, as indicated by the identification of pathogenic Naegleria fowleri and nonpathogenic Naegleri gruberi and Acanthamoeba castellanii isolated from the Savannah River Plant in South Carolina. Cytofluorographic analysis of environmental samples has several advantages over the current methods of isolation and classification of free-living amoebae. With this system, it is possible to rapidly identify species and quantitate mixtures of pathogenic amoebae in environmental samples. Cytofluorographic analysis of amoebic isolates reduces the time presently required to screen environmental sites for pathogenic amoebae. The cytofluorograph permits detection and species identification of nonthermophilic Naegleria spp. and Acanthamoeba spp. that could not easily be isolated for species identification by conventional methods. Other advantages of flow cytometry over fluorescent microscopy include a high degree of statistical precision due to the large numbers measured, high immunofluorescent titers, and elimination of subjectivity and fluorescence fading.  相似文献   

5.
Modifications to the EnviroAmp Legionella detection system are described which permit the rapid analysis of bacterial colonies taken from Legionella selective media. Capillary PCR permitted twice the number of samples to be analysed with a single kit. When PCR was positive for Leg. pneumophila , this result was confirmed by seroagglutination. The reverse dot blot hybridization assay was only used where PCR indicated a Legionella sp. other than Leg. pneumophila , permitting further savings on detection system components. This technique and standard confirmation procedures were applied to 133 isolates arising from 63 water samples plated to Legionella isolation media. Results agreed except for two isolates which gave a positive result for Legionella spp. by PCR and hybridization but were negative using standard procedures. Raising the annealing/extension temperature of the PCR by 2 °C eliminated the false positive result with these two isolates but did not adversely effect the sensitivity of the assay, as determined by re-testing of 68 environmental isolates and testing of 69 new environmental isolates and 12 Legionella reference species. The modified technique provides a convenient and cost effective alternative to standard confirmation procedures.  相似文献   

6.
Protozoans are gaining recognition as environmental hosts for a variety of waterborne pathogens. We compared the growth of Mycobacterium avium, a human pathogen associated with domestic water supplies, in coculture with the free-living amoeba Acanthamoeba polyphaga with the growth of M. avium when it was separated from amoebae by a 0.1-μm-pore-size polycarbonate membrane (in a parachamber). Although viable mycobacteria were observed within amoebal vacuoles, there was no significant difference between bacterial growth in coculture and bacterial growth in the parachamber. This suggests that M. avium is able to grow saprozoically on products secreted by the amoebae. In contrast, Legionella pneumophila, a well-studied intracellular parasite of amoebae, multiplied only in coculture. A comparison of amoebae infected with L. pneumophila and amoebae infected with M. avium by electron microscopy demonstrated that there were striking differences in the locations of the bacteria within amoebal cysts. While L. pneumophila resided within the cysts, M. avium was found within the outer walls of the double-walled cysts of A. polyphaga. These locations may provide a reservoir for the bacteria when environmental conditions become unfavorable.  相似文献   

7.
Forty eyewash units were sampled for protozoa, bacteria, and fungi. Total heterotrophic bacterial counts on nutrient agar and R2A agar (Difco Laboratories, Detroit, Mich.) ranged from 0 to 10(5) CFU/ml, with Pseudomonas spp. being the most frequently isolated. Total counts of 10(4) and 10(8) cells per ml were obtained with the acridine orange staining procedure. All samples were examined for Legionella spp. by direct fluorescent-antibody staining and by culturing on buffered charcoal-yeast extract agar containing alpha-ketoglutarate and glycine and supplemented with cycloheximide, vancomycin, and polymyxin B. DNA-DNA hybridization was used to confirm identification of the Legionella isolates. Legionellae were detected in 35 of 40 (87.5%) samples by direct fluorescent-antibody staining, with 3 samples yielding both Legionella spp. and amoebae. Amoebae identified as Hartmannella, Vahlkampfia, Acanthamoeba, and Cochliopodium spp. were detected in 19 of 40 (47:5%) samples. Sabouraud dextrose agar was used to obtain a crude estimate of viable fungal populations, pH, hardness, and ammonia, alkalinity, chlorine, copper, and iron contents were recorded for all water samples collected from eyewash stations; 33% of the samples had greater than or equal to 10 mg of CO2 per liter. It is concluded that eyewash stations not regularly flushed and/or cleaned and used to flush traumatized eye tissue may be a source of infection and can contaminate laboratory environments via aerosol transmission.  相似文献   

8.
Acanthamoeba species are free-living amoebae found in a range of environments. Within this genus, a number of species are recognized as human pathogens, potentially causing Acanthamoeba keratitis, granulomatous amoebic encephalitis, and chronic granulomatous lesions. In this study, 60 water samples were taken from four thermal spring recreation areas in southern Taiwan. We detected living Acanthamoeba spp. based on culture-confirmed detection combined with the molecular taxonomic identification method. Living Acanthamoeba spp. were detected in nine (15%) samples. The presence or absence of Acanthamoeba spp. in the water samples depended significantly on the pH value. The most frequently identified living Acanthamoeba genotype was T15 followed by T4, Acanthamoeba spp., and T2. Genotypes T2, T4, and T15 of Acanthamoeba, are responsible for Acanthamoeba keratitis as well as granulomatous amoebic encephalitis, and should therefore be considered a potential health risk associated with human activities in thermal spring environments.  相似文献   

9.
Legionella pneumophila, a bacterium that replicates within aquatic amoebae and persists in the environment as a free-living microbe, is the causative agent of Legionnaires' disease. Among the many Legionella species described, L. pneumophila is associated with 90% of human disease, and within the 15 serogroups (Sg), L. pneumophila Sg1 causes more than 84% of Legionnaires' disease worldwide. Thus, rapid and specific identification of L. pneumophila Sg1 is of the utmost importance for evaluation of the contamination of collective water systems and the risk posed. Previously we had shown that about 20 kb of the 33-kb locus carrying the genes coding for the proteins involved in lipopolysaccharide biosynthesis (LPS gene cluster) by L. pneumophila was highly specific for Sg1 strains and that three genes (lpp0831, wzm, and wzt) may serve as genetic markers. Here we report the sequencing and comparative analyses of this specific region of the LPS gene cluster in L. pneumophila Sg6, -10, -12, -13, and -14. Indeed, the wzm and wzt genes were present only in the Sg1 LPS gene cluster, which showed a very specific gene content with respect to the other five serogroups investigated. Based on this observation, we designed primers and developed a classical and a real-time PCR method for the detection and simultaneous identification of L. pneumophila Sg1 in clinical and environmental isolates. Evaluation of the selected primers with 454 Legionella and 38 non-Legionella strains demonstrated 100% specificity. Sensitivity, specificity, and predictive values were further evaluated with 209 DNA extracts from water samples of hospital water supply systems and with 96 respiratory specimens. The results showed that the newly developed quantitative Sg1-specific PCR method is a highly specific and efficient tool for the surveillance and rapid detection of high-risk L. pneumophila Sg1 in water and clinical samples.  相似文献   

10.
Diverse species of Legionella and Legionella‐like amoebal pathogens (LLAPs) have been identified as intracellular bacteria in many amoeboid protists. There are, however, other amoeboid groups such as testate amoeba for which we know little about their potential to host such bacteria. In this study, we assessed the occurrence and diversity of Legionella spp. in cultures and environmental isolates of freshwater arcellinid testate amoebae species, Arcella hemispherica, Arcella intermedia, and Arcella vulgaris, via 16S rRNA gene sequence analyses and fluorescent in situ hybridization (FISH). Analysis of the 16S rRNA gene sequences indicated that A. hemispherica, A. intermedia, and A. vulgaris host Legionella‐like bacteria with 94–98% identity to other Legionella spp. based on NCBI BLAST search. Phylogenetic analysis placed Legionella‐like Arcella‐associated bacteria (LLAB) in three different clusters within a tree containing all other members of Legionella and LLAPs. The intracellular localization of the Legionella within Arcella hosts was confirmed using FISH with a Legionella‐specific probe. This study demonstrates that the host range of Legionella and Legionella‐like bacteria in the Amoebozoa extends beyond members of “naked” amoebae species, with members of the testate amoebae potentially serving an ecological role in the dispersal, protection, and replication of Legionella spp. in natural environments.  相似文献   

11.
Aquatic protozoa are natural hosts of the human pathogen Legionella pneumophila. The fluorescence labeled 16S rRNA-targeted oligonucleotide probe LEGPNE1 has recently been shown to specifically detect extracellular legionellae as well as intracellular legionellae parasitizing protozoa. In this study we designed oligonucleotide probes which are complementary to distinct regions of the 18S rRNA of the Legionella host organisms of the genera Hartmannella and Naegleria. The specificity of the probes, HART498 and NAEG1088, was tested by in situ hybridization of various laboratory reference strains. In order to evaluate the fluorescent probes for environmental studies three selected Legionella-positive cold water habitats were examined for the presence of these protozoa. Traditional culture methods followed by morphological identification revealed an almost consistent presence of Naegleria spp. in cold water habitats. Other protozoa species including Acanthamoeba spp., Echinamoeba spp., Hartmannella spp., Platyamoeba placida, Saccamoeba spp., Thecamoeba quadrilineata, and Vexillifera spp. were found sporadically. Concomitant analysis of the pH, conductivity and temperature of the water samples revealed no preference of Legionella or the respective protozoa for certain environmental conditions. The specificity of the newly designed 18S rRNA probes demonstrates that they are valuable and rapid tools for the identification of culturable environmental protozoa.  相似文献   

12.
Accumulating evidence supports a role for Chlamydia-related organisms as emerging pathogens for human and animals. Assessment of their pathogenicity requires strain availability, at least for animal models and serological studies. As these obligate intracellular species are able to grow inside amoebae, we used co-culture with Acanthamoeba castellanii in an attempt to recover new Chlamydia-related species from river water. We isolated two strains from eight water samples. The first strain is a new Parachlamydia acanthamoebae strain that differs from previously described isolates by only two bases in the complete 16S rRNA gene sequence. The second isolate is the first representative of a new Chlamydiales family, as demonstrated by genetic and phylogenetic analyses of the 16S rRNA, 23S rRNA, ADP/ATP translocase and RnpB encoding genes. Using fluorescent in situ hybridization and electron microscopy, we demonstrated that it grows in high numbers in amoebae, where it exhibits a Chlamydia-like developmental cycle with reticulate bodies and star-like elementary bodies. Based on these results, we propose to name this new species 'Criblamydia sequanensis'. This work confirmed that amoebal co-culture is a relevant method to isolate new chlamydiae, and that it can be successfully applied to ecosystems colonized with a complex microbial community.  相似文献   

13.
Free-living amoebae in water are hosts to many bacterial species living in such an environment. Such an association enables bacteria to select virulence factors and survive in adverse conditions. Waterborne mycobacteria (WBM) are important sources of community- and hospital-acquired outbreaks of nontuberculosis mycobacterial infections. However, the interactions between WBM and free-living amoebae in water have been demonstrated for only few Mycobacterium spp. We investigated the ability of a number (n = 26) of Mycobacterium spp. to survive in the trophozoites and cysts of Acanthamoeba polyphaga. All the species tested entered the trophozoites of A. polyphaga and survived at this location over a period of 5 days. Moreover, all Mycobacterium spp. survived inside cysts for a period of 15 days. Intracellular Mycobacterium spp. within amoeba cysts survived when exposed to free chlorine (15 mg/liter) for 24 h. These data document the interactions between free-living amoebae and the majority of waterborne Mycobacterium spp. Further studies are required to examine the effects of various germicidal agents on the survival of WBM in an aquatic environment.  相似文献   

14.
Aims:  To determine the incidence of multiple antibiotic-resistant strains of the emergent human pathogens Legionella pneumophila , Pseudomonas aeruginosa and mesophilic Aeromonas species among those isolated from water reservoirs and industrial cooling systems.
Methods and Results:  Water from four natural water reservoirs and four industrial cooling towers was sampled for 1 year period. The total heterotrophs, mesophilic Aeromonas , Pseudomonas spp. and Legionella spp. counts were performed as recommended by standard procedures, and the sensitivity of the isolates to 27 antibiotics was tested. A total of 117 Aeromonas , 60 P. aeruginosa and 15  L. pneumophila strains were isolated and identified by means of biochemical tests and DNA probes. 46·4% of Aeromonas , and 100% of P. aeruginosa isolates presented multiple resistance. Legionella pneumophila strains were generally sensitive to the drugs used.
Conclusions:  Antibiotic-resistant pathogenic bacteria belonging to P. aeruginosa and mesophilic Aeromonas species are common in natural aquatic environments. Thus, the risk of waterborne diseases owing to domestic and industrial uses of freshwater should be re-examined from the increase of bacterial resistance point of view.
Significance and Impact of the Study:  These data confirm the emergence of bacteria resistant to antibiotics in aquatic environments.  相似文献   

15.
Water samples were taken systematically from a 100-km2 area of mainly dairy farmland in northwestern England and examined for Campylobacter spp. Pulsed-field gel electrophoresis-restriction fragment length polymorphism (PFGE-RFLP) and flaA strain typing of Campylobacter jejuni and Campylobacter coli isolates were done. Data on the water source and the adjacent environment were recorded and examined as explanatory variables. Campylobacter spp. were isolated from 40.5% (n = 119) of the water samples tested. C. jejuni was isolated from 14.3%, C. coli was isolated from 18.5%, and Campylobacter lari was isolated from 4.2% of the samples. Campylobacter hyointestinalis was not isolated from any water source. The difference in prevalence between water types (trough, running, and standing) was significant (P = 0.001). C. jejuni was the species most commonly isolated from trough-water and running-water sources, while C. coli was the most frequently isolated from standing water (P < 0.001). No association was found between the presence of Escherichia coli and that of Campylobacter spp. The final multivariable logistic regression model for Campylobacter spp. included the following variables: water source, soil type, aspect, and amount of cattle fecal material in the environment (fecal pat count). Strain typing demonstrated a diverse population of C. jejuni and the presence of a common C. coli flaA type that was widely distributed throughout the area. Most of the isolates within the common flaA type were discriminated by PFGE-RFLP. These findings suggest a possible role for environmental water in the epidemiology of Campylobacter spp. in a farming environment.  相似文献   

16.
Legionella species are frequently detected in aquatic environments, but their occurrence in extreme, acidic, geothermal habitats has not been explored with cultivation-independent methods. We investigated a predominately eukaryotic algal mat community in a pH 2.7 geothermal stream in Yellowstone National Park for the presence of Legionella and potential host amoebae. Our analyses, using PCR amplification with Legionella-specific primers targeting 16S rRNA genes, detected four known Legionella species, as well as Legionella sequences from species that are not represented in sequence databases, in mat samples and cultivated isolates. The nonrandom occurrence of sequences detected at lower (30 degrees C) and higher (35 to 38 degrees C) temperatures suggests that natural thermal gradients in the stream influence Legionella species distributions in this mat community. We detected only one sequence, Legionella micdadei, from cultivated isolates. We cultured and sequenced partial 18S rRNA gene regions from two potential hosts, Acanthamoeba and Euglena species.  相似文献   

17.
A PCR test has been developed for the specific identification of Legionella longbeachae. The test targeted sequence unique to both L. longbeachae serogroups 1 and 2 within the mip gene and permitted both species and serogroup identification. The test was trialed on a range of closely related species and 20 clinical isolates originating from Australia, the USA and Israel. Results were consistent with previous identification analyses. From 20 water samples known to contain Legionella spp. one sample yielded isolates which consistently tested positive by L. longbeachae serogroup 1 PCR. DNA sequencing of the PCR product, 5S rRNA gene sequence and hybridisation analysis with a specific oligonucleotide probe definitively identified one isolate as L. longbeachae serogroup 1. PCR testing was demonstrated as a superior method of identification to traditional seroagglutination reactions, which were ambiguous and could explain the previous failure to identify the presence of this microorganism in water.  相似文献   

18.
Chlamydiae are obligate intracellular bacteria infecting free-living amoebae, vertebrates and some invertebrates. Novel members are regularly discovered, and there is accumulating evidence supporting a very important diversity of chlamydiae in the environment. In this study, we investigated the presence of chlamydiae in a drinking water treatment plant. Samples were used to inoculate Acanthamoeba monolayers ( Acanthamoeba co-culture), and to recover autochthonous amoebae onto non-nutritive agar. Chlamydiae were searched for by a pan-chlamydia 16S rRNA gene PCR from both Acanthamoeba co-cultures and autochthonous amoebae, and phylotypes determined by 16S rRNA gene sequencing. Autochthonous amoebae also were identified by 18S rRNA gene amplification and sequencing. From a total of 79 samples, we recovered eight chlamydial strains by Acanthamoeba co-culture, but only one of 28 amoebae harboured a chlamydia. Sequencing results and phylogenetic analysis showed our strains belonging to four distinct chlamydial lineages. Four strains, including the strain recovered within its natural host, belonged to the Parachlamydiaceae ; two closely related strains belonged to the Criblamydiaceae ; two distinct strains clustered with Rhabdochlamydia spp.; one strain clustered only with uncultured environmental clones. Our results confirmed the usefulness of amoeba co-culture to recover novel chlamydial strains from complex samples and demonstrated the huge diversity of chlamydiae in the environment, by identifying several new species including one representing the first strain of a new family.  相似文献   

19.
Duopath Legionella (Merck KGaA, Darmstadt, Germany) is a new immunochromatographic assay for the simultaneous identification of cultured L. pneumophila and Legionella species other than L. pneumophila. In tests of 89 L. pneumophila strains and 87 Legionella strains other than L. pneumophila representing 41 different species, Duopath and a widely used latex agglutination assay detected L. pneumophila with 100% and 98% accuracy, respectively, whereas the percentages differed significantly for other Legionella spp. (93% versus 37% [P < 0.001]). Since many countries' regulations require the identification of Legionella spp. in water and environmental samples, the use of Duopath Legionella to comply with those regulations could contribute to significantly fewer false-negative results.  相似文献   

20.
Dental unit waterlines (DUWL) support growth of a dense microbial population that includes pathogens and hypersensitivity-inducing bacteria, such as Legionella spp. and non-tuberculous mycobacteria (NTM). Dynamic dental instruments connected to DUWL generate aerosols in the work environment, which could allow waterborne pathogens to be aerosolized. The use of the real-time quantitative polymerase chain reaction (qPCR) provides a more accurate estimation of exposure levels compared with the traditional culture approach. Bioaerosol sampling was performed 13 times in an isolated dental treatment room according to a standardized protocol that included four dental prophylaxis treatments. Inhalable dust samples were taken at the breathing zone of both the hygienist and patient and outside the treatment room (control). Total bacteria as well as Legionella spp. and NTM were quantified by qPCR in bioaerosol and DUWL water samples. Dental staff and patients are exposed to bacteria generated during dental treatments (up to 4.3 E + 05 bacteria per m(3) of air). Because DUWL water studied was weakly contaminated by Legionella spp. and NTM, their aerosolization during dental treatment was not significant. As a result, infectious and sensitization risks associated with legionellae and NTM should be minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号