首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
Consistent with earlier analyses of human cytomegalovirus UL36 mRNA, we find that the UL36 protein is present throughout infection. In fact, it is delivered to the infected cell as a constituent of the virion. Curiously, much less UL36 protein accumulated in cells infected with the AD169 strain of human cytomegalovirus than in cells infected with the Towne or Toledo strain, and localization of the protein in cells infected with AD169 is strikingly different from that in cell infected with the Towne or Toledo strain. The variation in steady-state level of the proteins results from different stabilities of the proteins. The UL36 proteins from the three viral strains differ by several amino acid substitutions. However, this variability is not responsible for the different half-lives because the AD169 and Towne proteins, which exhibit very different half-lives within infected cells, exhibit the same half-life when introduced into uninfected cells by transfection with expression plasmids. We demonstrate that the UL36 protein is nonessential for growth in cultured cells, and we propose that the ability of the virus to replicate in the absence of UL36 function likely explains the striking strain-specific variation in the half-life and intracellular localization of the protein.  相似文献   

4.
5.
Human cytomegalovirus (HCMV) virions are structurally complex, and the mechanisms by which they are assembled are poorly understood, especially with respect to the cytoplasmic phase of assembly, during which the majority of the tegument is acquired and final envelopment occurs. These processes occur at a unique cytoplasmic structure called the assembly complex, which is formed through a reorganization of the cellular secretory apparatus. The HCMV tegument protein UL99 (pp28) is essential for viral replication at the stage of secondary envelopment. We previously demonstrated that UL99 interacts with the essential tegument protein UL94 in infected cells as well as in the absence of other viral proteins. Here we show that UL94 and UL99 alter each other's localization and that UL99 stabilizes UL94 in a binding-dependent manner. We have mapped the interaction between UL94 and UL99 to identify the amino acids of each protein that are required for their interaction. Mutation of these amino acids in the context of the viral genome demonstrates that HCMV is completely defective for replication in the absence of the interaction between UL94 and UL99. Further, we demonstrate that in the absence of their interaction, both UL94 and UL99 exhibit aberrant localization and do not accumulate at the assembly complex during infection. Taken together, our data suggest that the interaction between UL94 and UL99 is essential for the proper localization of each protein to the assembly complex and thus for the production of infectious virus.  相似文献   

6.
7.
8.
9.
The amino-terminal 290 residues of UL44, the presumed processivity factor of human cytomegalovirus DNA polymerase, possess all of the established biochemical activities of the full-length protein, while the carboxy-terminal 143 residues contain a nuclear localization signal (NLS). We found that although the amino-terminal domain was sufficient for origin-dependent synthesis in a transient-transfection assay, the carboxy-terminal segment was crucial for virus replication and for the formation of DNA replication compartments in infected cells, even when this segment was replaced with a simian virus 40 NLS that ensured nuclear localization. Our results suggest a role for this segment in viral DNA synthesis.Human cytomegalovirus (HCMV) encodes a DNA polymerase which is composed of two subunits, UL54, the catalytic subunit, and UL44, an accessory protein (8, 12, 21). UL44 can be divided into two regions, a 290-residue amino (N)-terminal domain and a 143-residue carboxy (C)-terminal segment. The overall fold of the N-terminal domain is markedly similar to that of processivity factors such as herpes simplex virus type 1 (HSV-1) UL42 and eukaryotic proliferating cell nuclear antigen (6, 22, 41), which function to tether catalytic subunits to DNA to ensure long-chain DNA synthesis. In vitro, the N-terminal domain of UL44 is sufficient for all of the established biochemical activities of full-length UL44, including dimerization, binding to double-stranded DNA, interaction with UL54, and stimulation of long-chain DNA synthesis, consistent with a role as a processivity factor (4, 5, 8, 11, 23, 24, 39). In contrast, little is known about the functions of the C-terminal segment of UL44 other than its having been reported from transfection experiments to be important for downregulation of transactivation of a non-HCMV promoter (7) and to contain a nuclear localization signal (NLS) (3). Neither the importance of this NLS nor the role of the entire C-terminal segment has been investigated in HCMV-infected cells.We first examined whether the N-terminal domain is sufficient to support DNA synthesis from HCMV oriLyt in cells using a previously described cotransfection-replication assay (27, 28). A DpnI-resistant fragment, indicative of oriLyt-dependent DNA synthesis, was detected in the presence of wild-type (WT) UL44 (pSI-UL44) (34) and in the presence of the UL44 N-terminal domain (pSI-UL44ΔC290), but not in the presence of UL44-F121A (6, 34), a mutant form previously shown not to support oriLyt-dependent DNA synthesis (34) (Fig. (Fig.1A).1A). Thus, the N-terminal domain alone is sufficient to support oriLyt-dependent DNA synthesis in a transient-transfection assay.Open in a separate windowFIG. 1.Effects of UL44 C-terminal truncations in various assays. (A) HFF cells were cotransfected with the pSP50 plasmid (containing the oriLyt DNA replication origin), a plasmid expressing WT or mutant UL44 (as indicated at the top of the panel), and plasmids expressing all of the other essential HCMV DNA replication proteins. At 5 days posttransfection, total DNA was extracted and cleaved with DpnI to digest unreplicated DNA and a Southern blot assay was performed to detect replicated pSP50. An arrow indicates DpnI-resistant, newly synthesized pSP50 fragments. (B) FLAG-tagged constructs analyzed in panel C are cartooned as horizontal bars. The names of the constructs are above the bars. The lengths of the constructs in amino acids are indicated by the scale at the bottom of the panel. The positions of residues required but not necessarily sufficient for features of the constructs are designated by shading, as indicated at the bottom of the panel. (C) Vero cells were transfected with plasmids expressing WT UL44 (parts a to c), FLAG-UL44 (parts d to f), FLAG-UL44-290stop (parts g to i), or FLAG-UL44-290NLSstop (parts j to l). At 48 h posttransfection, cells were fixed and stained with 4′,6-diamidino-2-phenylindole (DAPI) to visualize the nucleus (blue) (parts a, d, g, and j) and by IF with anti-UL44 (part b) or anti-FLAG (parts e, h, and k) and a secondary antibody conjugated with Alexa 488 (green). Parts c, f, i, and l are merged from images in the left and middle columns. Magnification: ×1,000. (D) Replication kinetics of rescued viruses. Rescued derivatives of UL44 mutant viruses (UL44-290stop-R and UL44-290NLSstop-R) or WT AD169 viruses were used to infect HFF cells at an MOI of 1 PFU/cell. The supernatants from infected cells were collected every 24 h, and viral titers were determined by plaque assays on HFF cells.These results were somewhat unexpected, as the C-terminal segment contains a functional NLS identified in transfection assays (3). We therefore assayed the intracellular localization of WT and mutant UL44 following transient transfection using pcDNA3-derived expression plasmids. Since the anti-UL44 antibodies that we have tested do not recognize the N-terminal domain of UL44, we constructed UL44 genes to encode N-terminally FLAG-tagged full-length UL44 (FLAG-UL44) or a FLAG-tagged N-terminal domain, the latter by inserting three in-frame tandem stop codons after codon 290 (FLAG-UL44-290stop, Fig. Fig.1B).1B). We also constructed a mutant form encoding a FLAG-tagged N-terminal domain, followed by the simian virus 40 (SV40) T-antigen NLS (15-17), followed by three tandem stop codons (FLAG-UL44-290NLSstop, Fig. Fig.1B).1B). Vero cells were transfected with each construct using Lipofectamine 2000, fixed with 4% formaldehyde at 48 h posttransfection, and assayed by indirect immunofluorescence (IF) using anti-UL44 (Virusys) or anti-FLAG antibody (Sigma). We observed mostly nuclear localization of WT UL44 or FLAG-UL44 with either diffuse or more localized intranuclear distribution (Fig. (Fig.1C,1C, parts a to c and d to f, respectively) and some occasional perinuclear staining, which may be due to protein overexpression. In cells expressing FLAG-UL44-290NLSstop, we observed mostly diffuse nuclear localization with little to no perinuclear staining (Fig. (Fig.1C,1C, parts j to l). In cells expressing FLAG-UL44-290stop, we observed mostly cytoplasmic staining, but with some cells exhibiting some nuclear staining (Fig. (Fig.1C,1C, parts g to i), which may explain the ability of truncated UL44 to support oriLyt-dependent DNA replication in a transient-transfection assay (Fig. (Fig.1A1A).We next investigated whether the C-terminal segment of UL44 is necessary for viral replication. We reasoned that we could investigate whether any requirement for this segment could be due to a requirement for an NLS by testing whether the SV40 NLS could substitute for the loss of the UL44 C terminus. We therefore constructed HCMV UL44 mutant viruses by introducing the UL44-290stop and UL44-290NLSstop mutations into a WT AD169 bacterial artificial chromosome (BAC) using two-step red-mediated recombination as previously described (35, 38). We also constructed the same mutants with a FLAG epitope at the N terminus of UL44 (BAC-FLAG-UL44-290stop and BAC-FLAG-UL44-290NLSstop) to monitor UL44 expression, and we constructed rescued derivatives of the mutant BACs by replacing the mutated sequences with WT UL44 sequences, as described previously (35). We introduced BACs into human foreskin fibroblast (HFF) cells using electroporation (35, 38). In several experiments using at least two independent clones for each mutant, cells electroporated with any of the mutant BACs did not exhibit any cytopathic effect (CPE) within 21 days. In contrast, within 7 to 10 days, cells electroporated with the WT AD169 BAC, a BAC expressing WT UL44 with an N-terminal FLAG tag [AD169-BACF44 (35)], or any of the rescued derivatives began displaying a CPE and yielded infectious virus. The rescued derivatives of the nontagged mutants displayed replication kinetics similar to those of the WT virus following infection at a multiplicity of infection (MOI) of 1 PFU/cell (Fig. (Fig.1D).1D). The rescued derivatives of the FLAG-tagged mutants also replicated to WT levels (data not shown). Thus, the replication defects of the mutants were due to the introduced mutations that result in truncated UL44 either with or without the SV40 NLS. We therefore conclude that the C-terminal segment of UL44 is required for viral replication.To investigate the stage of viral replication at which the UL44 C-terminal segment is important, we first assayed the subcellular localization of immediate-early proteins IE1 and IE2 and FLAG-UL44 in cells electroporated with BAC DNA expressing the FLAG-tagged WT or the two mutant UL44s using IF at 2 days postelectroporation. IE1/IE2 could be detected diffusely distributed in nuclei of cells electroporated with all three BACs (Fig. 2b, f, and j). In cells electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, FLAG-UL44 was localized largely within the nucleus (Fig. 2c and k, respectively). In contrast, in cells electroporated with BAC-FLAG-UL44-290stop, the FLAG epitope was mainly localized diffusely in the cytoplasm, with only a small amount diffusely distributed in the nucleus (Fig. (Fig.2g).2g). These data indicate that IE proteins expressed from mutant BACs are properly localized and suggest that without its C-terminal segment, which includes the NLS identified in transfection assays (3), UL44 cannot efficiently localize to the nucleus in HCMV-infected cells. However, addition of the SV40 NLS was sufficient to efficiently localize the N-terminal domain of UL44 to the nucleus. Thus, the requirement for the C-terminal segment of UL44 for viral replication is not due solely to its NLS.Open in a separate windowFIG. 2.Localization of IE1/IE2 and FLAG-UL44 proteins in electroporated cells. HFF cells were electroporated with AD169-BACF44 (panels a to d), BAC-UL44-290stop (panels e to h), or BAC-FLAG-UL44-290NLSstop (panels i to l). At 48 h posttransfection, cells were fixed and probed with anti-IE1/2 (Virusys) or anti-FLAG (Sigma). Secondary antibodies coupled to fluorophores were used for visualization of IE1/2 (anti-mouse Alexa 594; panels b, f, and j) and FLAG (anti-rabbit Alexa 488; panels c, g, and k) antibodies. DAPI was used to counterstain the nucleus (panels a, e, and i). Panels d, h, and l are merged images of the panels in the other columns. Magnification: ×1,000.We next investigated if the block in viral replication due to the loss of the C-terminal segment could be attributed to a defect in viral DNA synthesis. Cells were electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, and viral DNA accumulation was assayed by quantitative real-time PCR at various times postelectroporation (Fig. (Fig.3)3) as previously described (32, 35). In HFFs electroporated with AD169-BACF44, viral DNA began to accumulate above the input levels by 8 days postelectroporation and increased over time, with as much as a 350-fold increase over the input DNA level by 18 days postelectroporation. In contrast, levels of viral DNA in cells electroporated with BAC-UL44-290NLSstop did not increase above input levels, even by 18 days postelectroporation. These data are consistent with the notion that the UL44 C-terminal segment is required for viral DNA synthesis, although we caution that the assay did not detect DNA synthesis from AD169-BACF44 until day 8, when viral spread had likely occurred (see below).Open in a separate windowFIG. 3.Quantification of viral DNA accumulation in electroporated cells. HFF cells were electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, and total DNA was harvested on the days postelectroporation indicated. Viral DNA accumulation was assessed by real-time PCR by assessing levels of the UL83 gene and normalizing to levels of the cellular β-actin gene (32). The data are presented as the fold increase in normalized viral DNA levels over the amount of input DNA (day 1).We also analyzed the localization patterns of UL44 and UL57, the viral single-stranded DNA binding protein, which is a marker for viral DNA replication compartments (1, 2, 18, 26, 29). At 8 days postelectroporation with AD169-BACF44, UL57 and FLAG-UL44 largely colocalized within a single large intranuclear structure that likely represents a fully formed replication compartment, with some cells containing multiple smaller globular structures within the nucleus that likely represent earlier stages of replication compartments (1, 2, 29) (Fig. 4a to d). Neighboring cells also stained for UL57 and FLAG-UL44, indicative of viral spread. In contrast, in cells electroporated with BAC-FLAG-UL44-290NLSstop, UL57 (Fig. (Fig.4f)4f) was found in either punctate or small globular structures. This pattern of UL57 staining resembled that observed at very early stages of viral DNA synthesis in HCMV-infected cells, but the structures were larger and less numerous than those observed in HCMV-infected cells in the presence of a viral DNA polymerase inhibitor (2, 29). Staining for FLAG-UL44 was nuclear and largely diffuse, with some areas of more concentrated staining (Fig. (Fig.4g),4g), which could also be observed in some cells at day 2 postelectroporation (Fig. (Fig.3k).3k). This pattern of UL44 localization was generally similar to that observed in HCMV-infected cells at very early stages of infection or when HCMV DNA synthesis is blocked and also similar to the pattern in cells transfected with a UL84 null mutant BAC (2, 29, 33, 40). Importantly, little colocalization of UL57 and UL44 was observed, with areas of concentration of UL57 or UL44 occupying separate regions in the nuclei of these cells (Fig. (Fig.4h).4h). We are unaware of any other examples of this pattern of localization of these proteins in HCMV-infected cells and suggest that it may be a result of the loss of the UL44 C-terminal segment. These results indicate that this segment is important for efficient formation of viral DNA replication compartments, again consistent with a requirement for this portion of UL44 for viral DNA synthesis.Open in a separate windowFIG. 4.Localization of UL57 and FLAG-UL44 proteins in electroporated cells. HFF cells were electroporated with AD169-BACF44 (panels a to d) or BAC-FLAG-UL44-290NLSstop (panels e to h). At 8 days posttransfection, cells were fixed and then stained with antibodies specific for UL57 (Virusys) or FLAG (Sigma), followed by a secondary antibody coupled to fluorophores to detect UL57 (anti-mouse Alexa 594; panels b and f) and FLAG (anti-rabbit Alexa 488; panels c and g) antibodies. DAPI stain was used to counterstain the nucleus (panels a and e). Panels d and h are merged images of the panels in the other columns. White arrows identify punctate UL57 staining. Yellow arrows identify areas of concentration of FLAG-UL44 staining. Magnification: ×1,000.Our results, taken together, argue for a role for the C-terminal segment of UL44 in HCMV-infected cells in efficient nuclear localization of UL44 and a role in viral DNA synthesis beyond its role in nuclear localization. It is possible that this segment interacts with host or viral proteins involved in DNA replication. Of the various proteins reported to interact with UL44 (10, 19, 30, 31, 35-37), interesting candidates include the host protein nucleolin, which has been shown to associate with UL44 and be important for viral DNA synthesis (35), and the viral UL112-113 proteins, which in transfection assays were shown to recruit UL44 to early sites of DNA replication (2, 29, 33). After this paper was submitted, Kim and Ahn reported that the C-terminal segment of UL44 is necessary for interaction with a UL112-113 protein and, similar to our findings, crucial for viral replication (19). However, contrary to our findings, they reported that this segment was not necessary for efficient nuclear localization of UL44 (19). It may well be that the C-terminal segment of UL44 also has some other role later in viral replication, perhaps in gene expression, as has been suggested (7, 13, 14).A virus with a deletion of the C-terminal 150 amino acids of the HSV-1 polymerase accessory subunit UL42 displays no obvious defect in replication (9). Thus, it appears that HSV-1 and HCMV exhibit different requirements for the C-terminal segments of their respective accessory proteins. This and many other differences between these functionally and structurally orthologous proteins (5, 6, 20, 24, 25) suggest considerable selection for different features during evolution.  相似文献   

10.
11.
12.
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.  相似文献   

13.
Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication.  相似文献   

14.
Kamil JP  Coen DM 《Journal of virology》2007,81(19):10659-10668
UL97 is a protein kinase encoded by human cytomegalovirus (HCMV) and is an important target for antiviral drugs against this ubiquitous herpesvirus, which is a major cause of life-threatening opportunistic infections in the immunocompromised host. In an effort to better understand the function(s) of UL97 during HCMV replication, a recombinant HCMV, NTAP97, which expresses a tandem affinity purification (TAP) tag at the amino terminus of UL97, was used to obtain UL97 protein complexes from infected cells. pp65 (also known as UL83), the 65-kDa virion tegument phosphoprotein, specifically copurified with UL97 during TAP, as shown by mass spectrometry and Western blot analyses. Reciprocal coimmunoprecipitation experiments using lysates of infected cells also indicated an interaction between UL97 and pp65. Moreover, in a glutathione S-transferase (GST) pull-down experiment, purified GST-pp65 fusion protein specifically bound in vitro-translated UL97, suggesting that UL97 and pp65 do not require other viral proteins to form a complex and may directly interact. Notably, pp65 has been previously reported to form unusual aggregates during viral replication when UL97 is pharmacologically inhibited or genetically ablated, and a pp65 deletion mutant was observed to exhibit modest resistance to a UL97 inhibitor (M. N. Prichard, W. J. Britt, S. L. Daily, C. B. Hartline, and E. R. Kern, J. Virol. 79:15494-15502, 2005). A stable protein-protein interaction between pp65 and UL97 may be relevant to incorporation of these proteins into HCMV particles during virion morphogenesis, with potential implications for immunomodulation by HCMV, and may also be a mechanism by which UL97 is negatively regulated during HCMV replication.  相似文献   

15.
Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.  相似文献   

16.
人类巨细胞病毒在多次传代后,会表现出不同的毒力水平.与临床低传代株Toledo相比,实验室高传代株AD169缺失了19个开放阅读框(ORF).这19个基因被认为是与HCMV致病性最可能相关的一组基因,研究这些基因的多态性对揭示HCMV致病性的遗传基础具有指导意义.UL133基因是这19个ORF中的一个.以临床低传代株Toledo和Merlin为对照,分析了23个临床病毒株UL133基因的遗传多态性.序列分析表明,UL133基因具有一定的多态性,Toledo株、Merlin株与我们分离到的临床株一起可分为3个基因型:G1、G2和G3.G2、G3型毒株均能导致先天性感染.没有发现UL133基因型与患儿临床疾病的必然关联.  相似文献   

17.
Using the cis-acting human cytomegalovirus (HCMV) packaging elements (pac 1 and pac 2) as DNA probes, specific DNA-protein complexes were detected by electrophoretic mobility shift assay (EMSA) in both HCMV-infected cell nuclear extracts and recombinant baculovirus-infected cell extracts containing the HCMV p130 (pUL56) protein. DNA-binding proteins, which were common in uninfected and infected cell extracts, were also detected. Mutational analysis showed that only the AT-rich core sequences in these cis-acting motifs, 5′-TAAAAA-3′ (pac 1) and 5′-TTTTAT-3′ (pac 2), were required for specific DNA-protein complex formation. The specificity of the DNA-protein complexes was confirmed by EMSA competition. Furthermore, a specific endonuclease activity was found to be associated with lysates of baculovirus-infected cells expressing recombinant p130 (rp130). This nuclease activity was time dependent, related to the amount of rp130 in the assay, and ATP independent. Nuclease activity remained associated with rp130 after partial purification by sucrose gradient centrifugation, suggesting that this activity is a property of HCMV p130. We propose a possible involvement of p130 in HCMV DNA packaging.Human cytomegalovirus (HCMV), one of eight human herpesviruses, can cause serious illness in neonates as well as in immunocompromised adults (2). For example, transplant and AIDS patients may develop life-threatening diseases as a consequence of primary infection or reactivation of latent infection. Present therapeutic approaches are limited, and new strategies that may result from a better understanding of the molecular events involved in viral maturation are needed.The HCMV virion consists of an envelope, an amorphous tegument, and an icosahedral nucleocapsid, which is assembled in the nuclei of infected cells. The precise molecular events of HCMV capsid assembly and subsequent DNA packaging are not well understood. It is generally accepted that viral DNA is packaged into a procapsid consisting of major capsid protein (UL86), minor capsid protein (UL85), minor capsid protein-binding protein (UL46), smallest capsid protein (UL47/48), assembly protein (UL80.5), and proteinase precursor protein (UL80a) (8). The assembly protein is removed during DNA insertion. It is unclear how the concatenated viral DNA contacts empty capsids and is cleaved and packaged into the capsid.Recent studies with herpes simplex virus type 1 (HSV-1) mutants that were temperature sensitive suggest that cleavage of the concatenated DNA does not occur in the absence of packaging (1). One possible model would be the involvement of cleavage packaging protein(s) which could facilitate incorporation of DNA into the procapsid by attaching to a specific motif within the viral genome. With HSV-1, the UL36 gene product (ICP1) and a smaller protein (possibly encoded by UL37) are part of a complex that recognizes the HSV-specific a sequence and are required for cleavage and packaging of viral DNA from concatemers (6, 7). In addition, the HSV-1 ICP 18.5 (UL28) gene product and the pseudorabies virus (PrV) homolog (16) were also reported to play an important role in DNA packaging (1, 14). Addison et al. (1) demonstrated that empty capsids were observed under conditions nonpermissive for the expression of the HSV-1 ICP 18.5 gene product. The HSV-1 ICP 18.5 mutants failed to cleave concatenated viral DNA in noncomplementing cells, suggesting that cleavage and packaging require ICP 18.5. Similar results were reported by Mettenleiter et al. (14) for PrV mutant protein. These observations suggest that the HSV-1 UL36, UL37, and UL28 gene products are involved in cleavage and packaging of concatenated viral DNA.In a recent study, we identified and partially characterized the gene product of HCMV UL56 (4). The HCMV UL56 gene product of 130 kDa is the homolog of the HSV-1 UL28 gene product. It is therefore postulated that UL56 possesses properties comparable to those of HSV-1 UL28, implying an involvement in cleavage and packaging of DNA. The HCMV genomic a sequence is a short sequence located at both termini of the genome and repeated in an inverted orientation at the L-S junction. The a sequence plays a key role in replication as a cis-acting signal for cleavage and packaging of progeny viral DNA and circularization of the viral genome. The HCMV a sequence contains two conserved motifs, pac 1 and pac 2, which are required for cleavage and packaging of the viral DNA (18). Both sequence motifs are located on one side of the cleavage site. The pac 1 and pac 2 motifs have an AT-rich core flanked by a GC-rich sequence. During the initial step of viral DNA packaging, a capsid-associated protein may bind to the pac sequences and may be involved in cleavage of the viral DNA concatemer.In this study, electrophoretic mobility shift assays (EMSAs) were performed with DNA probes spanning the region of these cis-acting elements. These studies demonstrate that specific proteins from HCMV-infected nuclear extracts or baculovirus-UL56-infected cell extracts bind to the pac motifs. Using affinity-purified monospecific antibodies, we show that p130 is present in specific DNA-protein complexes containing the pac motifs of the viral genome. Furthermore, evidence is presented for a sequence-specific endonuclease activity of recombinant HCMV p130, using circular plasmid DNA bearing the a sequence as a substrate.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号