首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ⅰ期临床试验主要关心药物的毒性,目的是在给定的剂量水平中寻找最大耐受剂量(MTD).本文提出了基于药物毒性反应等级的up-and-down自适应设计,调查了该设计在各种变化的剂量一毒性关系下的运作特征.结果表明:该设计方法对提高建议MTD的精确度,以及保护病人,防止病人暴露在较高毒性剂量下方面,对Ⅰ期临床试验的设计实现了有意义的改善.  相似文献   

2.
Design and analysis of phase I clinical trials   总被引:5,自引:0,他引:5  
B E Storer 《Biometrics》1989,45(3):925-937
The Phase I clinical trial is a study intended to estimate the so-called maximum tolerable dose (MTD) of a new drug. Although there exists more or less a standard type of design for such trials, its development has been largely ad hoc. As usually implemented, the trial design has no intrinsic property that provides a generally satisfactory basis for estimation of the MTD. In this paper, the standard design and several simple alternatives are compared with regard to the conservativeness of the design and with regard to point and interval estimation of an MTD (33rd percentile) with small sample sizes. Using a Markov chain representation, we found several designs to be nearly as conservative as the standard design in terms of the proportion of patients entered at higher dose levels. In Monte Carlo simulations, two two-stage designs are found to provide reduced bias in maximum likelihood estimation of the MTD in less than ideal dose-response settings. Of the three methods considered for determining confidence intervals--the delta method, a method based on Fieller's theorem, and a likelihood ratio method--none was able to provide both usefully narrow intervals and coverage probabilities close to nominal.  相似文献   

3.
Delayed dose limiting toxicities (i.e. beyond first cycle of treatment) is a challenge for phase I trials. The time‐to‐event continual reassessment method (TITE‐CRM) is a Bayesian dose‐finding design to address the issue of long observation time and early patient drop‐out. It uses a weighted binomial likelihood with weights assigned to observations by the unknown time‐to‐toxicity distribution, and is open to accrual continually. To avoid dosing at overly toxic levels while retaining accuracy and efficiency for DLT evaluation that involves multiple cycles, we propose an adaptive weight function by incorporating cyclical data of the experimental treatment with parameters updated continually. This provides a reasonable estimate for the time‐to‐toxicity distribution by accounting for inter‐cycle variability and maintains the statistical properties of consistency and coherence. A case study of a First‐in‐Human trial in cancer for an experimental biologic is presented using the proposed design. Design calibrations for the clinical and statistical parameters are conducted to ensure good operating characteristics. Simulation results show that the proposed TITE‐CRM design with adaptive weight function yields significantly shorter trial duration, does not expose patients to additional risk, is competitive against the existing weighting methods, and possesses some desirable properties.  相似文献   

4.
Drug combination trials are increasingly common nowadays in clinical research. However, very few methods have been developed to consider toxicity attributions in the dose escalation process. We are motivated by a trial in which the clinician is able to identify certain toxicities that can be attributed to one of the agents. We present a Bayesian adaptive design in which toxicity attributions are modeled via copula regression and the maximum tolerated dose (MTD) curve is estimated as a function of model parameters. The dose escalation algorithm uses cohorts of two patients, following the continual reassessment method (CRM) scheme, where at each stage of the trial, we search for the dose of one agent given the current dose of the other agent. The performance of the design is studied by evaluating its operating characteristics when the underlying model is either correctly specified or misspecified. We show that this method can be extended to accommodate discrete dose combinations.  相似文献   

5.
Thall PF  Sung HG  Choudhury A 《Biometrics》2001,57(3):914-921
A new modality for treatment of cancer involves the ex vivo growth of cancer-specific T-cells for subsequent infusion into the patient. The therapeutic aim is selective destruction of cancer cells by the activated infused cells. An important problem in the early phase of developing such a treatment is to determine a maximal tolerated dose (MTD) for use in a subsequent phase II clinical trial. Dose may be quantified by the number of cells infused per unit body weight, and determination of an MTD may be based on the probability of infusional toxicity as a function of dose. As in a phase I trial of a new chemotherapeutic agent, this may be done by treating successive cohorts of patients at different dose levels, with each new level chosen adaptively based on the toxicity data of the patients previously treated. Such a dose-finding strategy is inadequate in T-cell infusion trials because the number of cells grown ex vivo for a given patient may be insufficient for infusing the patient at the current targeted dose. To address this problem, we propose an algorithm for trial conduct that determines a feasible MTD based on the probabilities of both infusibility and toxicity as functions of dose. The method is illustrated by application to a dendritic cell activated lymphocyte infusion trial in the treatment of acute leukemia. A simulation study indicates that the proposed methodology is both safe and reliable.  相似文献   

6.
Ferte C  Soria JC  Penel N 《PloS one》2011,6(3):e16633

Purpose

Phase 1 trials play a crucial role in oncology by translating laboratory science into efficient therapies. Molecular targeted agents (MTA) differ from traditional cytotoxics in terms of both efficacy and toxicity profiles. Recent reports suggest that higher doses are not essential to produce the optimal anti-tumor effect. This study aimed to assess if MTA could achieve clinical benefit at much lower dose than traditional cytotoxics in dose seeking phase 1 trials.

Patients and Methods

We reviewed 317 recent phase 1 oncology trials reported in the literature between January 1997 and January 2009. First sign of efficacy, maximum tolerated dose (MTD) and their associated dose level were recorded in each trial.

Results

Trials investigating conventional cytotoxics alone, MTA alone and combination of both represented respectively 63.0% (201/317), 23.3% (74/317) and 13.7% (42/317) of all trials. The MTD was reached in 65.9% (209/317) of all trials and was mostly observed at the fifth dose level. First sign of efficacy was less frequently observed at the first three dose-levels for MTA as compared to conventional cytotoxics or combinations regimens (48.3% versus 63.2% and 61.3%). Sign of efficacy was observed in the same proportion whatever the treatment type (73–82%). MTD was less frequently established in trials investigating MTA alone (51.3%) or combinations (42.8%) as compared to conventional cytotoxic agents (75.6%).

Conclusion

First sign of efficacy was less frequently reported at the early dose-levels and MTD was less frequently reached in trials investigating molecular targeted therapy alone. Similar proportion of trials reported clinical benefit.  相似文献   

7.
Ⅰ期临床试验主要关心毒性,通常划分毒性为五个水平.简单起见,同时兼顾伦理问题,Ⅰ期临床试验通常采用up-and-down序贯设计(例如BCDⅠ,BCDⅡ,K-in-a-row,Narayana,Improved Narayana).然而,在分配剂量水平时,该设计没有区分已经试验了的病人的严重毒性水平等级,从而有可能分配给病人更高毒性的剂量水平.因此,本文提出了基于药物毒性等级确定最大耐受剂量的up-and-down设计方法,并进一步研究了该设计方法在各种变化的剂量—毒性关系下的运作特征,并且和标准的up-and-down设计作模拟比较,结果表明该设计方法对Ⅰ期临床试验设计的剂量建议具有重要意义.  相似文献   

8.

Background

Statistical simulations have consistently demonstrated that new dose-escalation designs such as accelerated titration design (ATD) and continual reassessment method (CRM)-type designs outperform the standard “3+3” design in phase I cancer clinical trials.

Methods

We evaluated the actual efficiency of different dose escalation methods employed in first-in-human phase I clinical trials of targeted agents administered as single agents published over the last decade.

Results

Forty-nine per cent of the 84 retrieved trials used the standard “3+3” design. Newer designs used included ATD in 42%, modified CRM [mCRM] in 7%, and pharmacologically guided dose escalation in 1%. The median numbers of dose levels explored in trials using “3+3”, ATD and mCRM designs were 6, 8 and 10, respectively. More strikingly, the mean MTD to starting dose ratio appeared to be at least twice as high for trials using mCRM or ATD designs as for trials using a standard “3+3” design. Despite this, the mean number of patients exposed to a dose below the MTD was similar in trials using “3+3”, ATD and mCRM designs.

Conclusion

Our results support a more extensive implementation of innovative dose escalation designs such as mCRM and ATD in phase I cancer clinical trials of molecularly targeted agents.  相似文献   

9.
The maximum tolerated dose (MTD) of lobaplatin as a single agent chemotherapy concurrent with intensity-modulated radiotherapy (IMRT) in Asian population with nasopharyngeal carcinoma (NPC) remains unclear. From June 2016 to December 2017, 17 patients diagnosed with stage III-IVb NPC from an Asian population were prospectively enrolled. Patients were administered lobaplatin with 25-50?mg/m2 escalation of dosage on day 1. Every 21?days (days 1, 22, and 43) during radiotherapy, cycles were repeated. We administered radiotherapy as 2.12-2.27 Gy per fraction with five daily fractions each week for 6 to 7 weeks. The evaluation of lobaplatin-related toxic effects was based on the Common Terminology Criteria for Adverse Events version 4.0. During the weekly treatment period, complete blood counts and biochemistry were performed. Dose-limiting toxicities (DLTs) were determined by the following events during any cycle in which lobaplatin was administered. Each dose group consisted of at least three cases. We proceeded to the subsequent dose group in the absence of DLT with a dose increment of 5 mg/m2 until DLT occurred. Periods from 1 week prior to the chemotherapy initiation to 3 weeks after the last chemotherapy were defined as DLT observation periods. MTD was determined by the dose that was immediately below the dose that produced DLT. After analysis, DLT occurred in three patients, including a group with two of three patients in 45 mg/m2 lobaplatin and another group with one of five patients in 40 mg/m2 lobaplatin. No grade 3-4 toxicity was observed in patients treated with lobaplatin <40 mg/m2. The tumor response rate at 12?weeks after treatment was 100%. In summary, lobaplatin concurrent with IMRT was active in stage III-IVb NPC, and the MTD for the lobaplatin as single-agent chemotherapy was 40 mg/m2 when combined with IMRT in an Asian population. This trial is registered with ClinicalTrials.gov, number NCT03188497.  相似文献   

10.
Clofarabine is a deoxyadenosine analog synthesized with the intention of retaining the favorable mechanistic properties of fludarabine and cladribine while eliminating their undesirable characteristics. Phase I studies among 32 patients with acute leukemia defined a maximum tolerated dose (MTD) of 40 mg/m2/d given as a one hour infusion daily for 5 days. The dose limiting toxicity (DLT) was transient hepatotoxicity. In a phase II study, 62 patients with acute leukemias received clofarabine at the MTD over 1 hour daily for 5 days. Twenty patients (32%) achieved complete response (CR), 1 had a partial response (PR), and 9 had a CR but without platelet recovery (CRp), for an overall response rate of 48%. Pharmacokinetic studies in the phase I trial revealed marked heterogeneity in peak levels of clofarabine among patients at the end of infusion, however; there was a linear, dose dependent increase in clofarabine concentration in the plasma. Pharmacodynamically, at the MTD, DNA synthesis was inhibited by more than 80% at the end of infusion. In phase II studies, the relationship between the pharmacokinetics of clofarabine triphosphate accumulation and clinical response at the MTD was explored, revealing an accumulation advantage of the cytotoxic triphosphate in leukemia cells of responders. The circulating leukemia blasts of patients who respond to clofarabine therapy exhibited a favorable pharmacokinetic profile. In conclusion, clofarabine is an active agent in the treatment of acute leukemias and MDS, and cellular pharmacokinetics has prognostic significance.  相似文献   

11.
Clofarabine is a deoxyadenosine analog synthesized with the intention of retaining the favorable mechanistic properties of fludarabine and cladribine while eliminating their undesirable characteristics. Phase I studies among 32 patients with acute leukemia defined a maximum tolerated dose (MTD) of 40 mg/m2/d given as a one hour infusion daily for 5 days. The dose limiting toxicity (DLT) was transient hepatotoxicity. In a phase II study, 62 patients with acute leukemias received clofarabine at the MTD over 1 hour daily for 5 days. Twenty patients (32%) achieved complete response (CR), 1 had a partial response (PR), and 9 had a CR but without platelet recovery (CRp), for an overall response rate of 48%. Pharmacokinetic studies in the phase I trial revealed marked heterogeneity in peak levels of clofarabine among patients at the end of infusion, however; there was a linear, dose dependent increase in clofarabine concentration in the plasma. Pharmacodynamically, at the MTD, DNA synthesis was inhibited by more than 80% at the end of infusion. In phase II studies, the relationship between the pharmacokinetics of clofarabine triphosphate accumulation and clinical response at the MTD was explored, revealing an accumulation advantage of the cytotoxic triphosphate in leukemia cells of responders. The circulating leukemia blasts of patients who respond to clofarabine therapy exhibited a favorable pharmacokinetic profile. In conclusion, clofarabine is an active agent in the treatment of acute leukemias and MDS, and cellular pharmacokinetics has prognostic significance.  相似文献   

12.
Summary A general framework is proposed for Bayesian model based designs of Phase I cancer trials, in which a general criterion for coherence (Cheung, 2005, Biometrika 92 , 863–873) of a design is also developed. This framework can incorporate both “individual” and “collective” ethics into the design of the trial. We propose a new design that minimizes a risk function composed of two terms, with one representing the individual risk of the current dose and the other representing the collective risk. The performance of this design, which is measured in terms of the accuracy of the estimated target dose at the end of the trial, the toxicity and overdose rates, and certain loss functions reflecting the individual and collective ethics, is studied and compared with existing Bayesian model based designs and is shown to have better performance than existing designs.  相似文献   

13.
For most antivenoms there is little information from clinical studies to infer the relationship between dose and efficacy or dose and toxicity. Antivenom dose-finding studies usually recruit too few patients (e.g. fewer than 20) relative to clinically significant event rates (e.g. 5%). Model based adaptive dose-finding studies make efficient use of accrued patient data by using information across dosing levels, and converge rapidly to the contextually defined ‘optimal dose’. Adequate sample sizes for adaptive dose-finding trials can be determined by simulation. We propose a model based, Bayesian phase 2 type, adaptive clinical trial design for the characterisation of optimal initial antivenom doses in contexts where both efficacy and toxicity are measured as binary endpoints. This design is illustrated in the context of dose-finding for Daboia siamensis (Eastern Russell’s viper) envenoming in Myanmar. The design formalises the optimal initial dose of antivenom as the dose closest to that giving a pre-specified desired efficacy, but resulting in less than a pre-specified maximum toxicity. For Daboia siamensis envenoming, efficacy is defined as the restoration of blood coagulability within six hours, and toxicity is defined as anaphylaxis. Comprehensive simulation studies compared the expected behaviour of the model based design to a simpler rule based design (a modified ‘3+3’ design). The model based design can identify an optimal dose after fewer patients relative to the rule based design. Open source code for the simulations is made available in order to determine adequate sample sizes for future adaptive snakebite trials. Antivenom dose-finding trials would benefit from using standard model based adaptive designs. Dose-finding trials where rare events (e.g. 5% occurrence) are of clinical importance necessitate larger sample sizes than current practice. We will apply the model based design to determine a safe and efficacious dose for a novel lyophilised antivenom to treat Daboia siamensis envenoming in Myanmar.  相似文献   

14.
Huang X  Biswas S  Oki Y  Issa JP  Berry DA 《Biometrics》2007,63(2):429-436
The use of multiple drugs in a single clinical trial or as a therapeutic strategy has become common, particularly in the treatment of cancer. Because traditional trials are designed to evaluate one agent at a time, the evaluation of therapies in combination requires specialized trial designs. In place of the traditional separate phase I and II trials, we propose using a parallel phase I/II clinical trial to evaluate simultaneously the safety and efficacy of combination dose levels, and select the optimal combination dose. The trial is started with an initial period of dose escalation, then patients are randomly assigned to admissible dose levels. These dose levels are compared with each other. Bayesian posterior probabilities are used in the randomization to adaptively assign more patients to doses with higher efficacy levels. Combination doses with lower efficacy are temporarily closed and those with intolerable toxicity are eliminated from the trial. The trial is stopped if the posterior probability for safety, efficacy, or futility crosses a prespecified boundary. For illustration, we apply the design to a combination chemotherapy trial for leukemia. We use simulation studies to assess the operating characteristics of the parallel phase I/II trial design, and compare it to a conventional design for a standard phase I and phase II trial. The simulations show that the proposed design saves sample size, has better power, and efficiently assigns more patients to doses with higher efficacy levels.  相似文献   

15.
16.
Braun TM  Yuan Z  Thall PF 《Biometrics》2005,61(2):335-343
Most phase I clinical trials are designed to determine a maximum-tolerated dose (MTD) for one initial administration or treatment course of a cytotoxic experimental agent. Toxicity usually is defined as the indicator of whether one or more particular adverse events occur within a short time period from the start of therapy. However, physicians often administer an agent to the patient repeatedly and monitor long-term toxicity due to cumulative effects. We propose a new method for such settings. It is based on the time to toxicity rather than a binary outcome, and the goal is to determine a maximum-tolerated schedule (MTS) rather than a conventional MTD. The model and method account for a patient's entire sequence of administrations, with the overall hazard of toxicity modeled as the sum of a sequence of hazards, each associated with one administration. Data monitoring and decision making are done continuously throughout the trial. We illustrate the method with an allogeneic bone marrow transplantation (BMT) trial to determine how long a recombinant human growth factor can be administered as prophylaxis for acute graft-versus-host disease (aGVHD), and we present a simulation study in the context of this trial.  相似文献   

17.
Phase I trials of cytotoxic agents in oncology are usually dose-finding studies that involve a single cytotoxic agent. Many statistical methods have been proposed for these trials, all of which are based on the assumption of a monotonic dose-toxicity curve. For single-agent trials, this is a valid assumption. In many trials, however, investigators are interested in finding the maximally tolerated dose based on escalating multiple cytotoxic agents. When there are multiple agents, monotonicity of the dose-toxicity curve is not clearly defined. In this article we present a design for phase I trials in which the toxicity probabilities follow a partial order, meaning that there are pairs of treatments for which the ordering of the toxicity probabilities is not known at the start of the trial. We compare the new design to existing methods for simple orders and investigate the properties of the design for two partial orders.  相似文献   

18.
There is growing interest in integrated Phase I/II oncology clinical trials involving molecularly targeted agents (MTA). One of the main challenges of these trials are nontrivial dose–efficacy relationships and administration of MTAs in combination with other agents. While some designs were recently proposed for such Phase I/II trials, the majority of them consider the case of binary toxicity and efficacy endpoints only. At the same time, a continuous efficacy endpoint can carry more information about the agent's mechanism of action, but corresponding designs have received very limited attention in the literature. In this work, an extension of a recently developed information‐theoretic design for the case of a continuous efficacy endpoint is proposed. The design transforms the continuous outcome using the logistic transformation and uses an information–theoretic argument to govern selection during the trial. The performance of the design is investigated in settings of single‐agent and dual‐agent trials. It is found that the novel design leads to substantial improvements in operating characteristics compared to a model‐based alternative under scenarios with nonmonotonic dose/combination–efficacy relationships. The robustness of the design to missing/delayed efficacy responses and to the correlation in toxicity and efficacy endpoints is also investigated.  相似文献   

19.
In recent years, the use of adaptive design methods in clinical research and development based on accrued data has become very popular due to its flexibility and efficiency. Based on adaptations applied, adaptive designs can be classified into three categories: prospective, concurrent (ad hoc), and retrospective adaptive designs. An adaptive design allows modifications made to trial and/or statistical procedures of ongoing clinical trials. However, it is a concern that the actual patient population after the adaptations could deviate from the originally target patient population and consequently the overall type I error (to erroneously claim efficacy for an infective drug) rate may not be controlled. In addition, major adaptations of trial and/or statistical procedures of on-going trials may result in a totally different trial that is unable to address the scientific/medical questions the trial intends to answer. In this article, several commonly considered adaptive designs in clinical trials are reviewed. Impacts of ad hoc adaptations (protocol amendments), challenges in by design (prospective) adaptations, and obstacles of retrospective adaptations are described. Strategies for the use of adaptive design in clinical development of rare diseases are discussed. Some examples concerning the development of Velcade intended for multiple myeloma and non-Hodgkin's lymphoma are given. Practical issues that are commonly encountered when implementing adaptive design methods in clinical trials are also discussed.  相似文献   

20.
The use of drug combinations in clinical trials is increasingly common during the last years since a more favorable therapeutic response may be obtained by combining drugs. In phase I clinical trials, most of the existing methodology recommends a one unique dose combination as “optimal,” which may result in a subsequent failed phase II clinical trial since other dose combinations may present higher treatment efficacy for the same level of toxicity. We are particularly interested in the setting where it is necessary to wait a few cycles of therapy to observe an efficacy outcome and the phase I and II population of patients are different with respect to treatment efficacy. Under these circumstances, it is common practice to implement two-stage designs where a set of maximum tolerated dose combinations is selected in a first stage, and then studied in a second stage for treatment efficacy. In this article we present a new two-stage design for early phase clinical trials with drug combinations. In the first stage, binary toxicity data is used to guide the dose escalation and set the maximum tolerated dose combinations. In the second stage, we take the set of maximum tolerated dose combinations recommended from the first stage, which remains fixed along the entire second stage, and through adaptive randomization, we allocate subsequent cohorts of patients in dose combinations that are likely to have high posterior median time to progression. The methodology is assessed with extensive simulations and exemplified with a real trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号