首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present the detailed synthetic protocol and characterization of Fmoc-Lys(Pac)-OH, its use for the preparation of octapeptides H-Gly-Phe-Tyr-N-MePhe-Thr-Lys(Pac)-Pro-Thr-OH and H-Gly-Phe-Phe-His-Thr-Pro-Lys(Pac)-Thr-OH by solid-phase synthesis, trypsin-catalyzed condensation of these octapeptides with desoctapeptide(B23-B30)-insulin, and penicillin G acylase catalyzed cleavage of phenylacetyl (Pac) group from Nepsilon-amino group of lysine to give novel insulin analogs [TyrB25, N-MePheB26,LysB28,ProB29]-insulin and [HisB26]-insulin. These new analogs display 4 and 78% binding affinity respectively to insulin receptor in rat adipose membranes.  相似文献   

2.
A study of the final stages of the biosynthesis of the penicillins in Penicillium chrysogenum has revealed two types of enzyme. One hydrolyses phenoxymethyl penicillin to 6-aminopenicillanic acid (6-APA). The other, also obtained from Aspergillus nidulans, transfers a phenylacetyl group from phenylacetyl CoA to 6-APA. The acyltransferase, purified to apparent homogeneity, had a molecular mass of 40 kDa. It also catalyses the conversion of isopenicillin N (IPN) to benzylpenicillin (Pen G) and hydrolyses IPN to 6-APA. In the presence of SDS it dissociates, with loss of activity, into fragments of ca 30 and 10.5 kDa, but activity is regained when these fragments recombine in the absence of SDS.  相似文献   

3.
All penicillin-binding proteins (PBPs) contain a conserved box of homology in the carboxyl-terminal half of their primary sequence that can be Lys-Thr-Gly, Lys-Ser-Gly, or His-Thr-Gly. Site-saturation mutagenesis was used to address the role of the lysine residue at this position (Lys213) in Escherichia coli PBP 5, a D-alanine carboxypeptidase enzyme. A soluble form of PBP 5 was used to replace Lys213 with 18 other amino acids, and the ability of these mutant proteins to bind [3H]penicillin G was assessed. Only the substitution of lysine with arginine resulted in a protein that was capable of forming a stable covalent complex with antibiotic. The affinity of [14C]penicillin G for the arginine mutant was 1.2-fold higher than for wild-type PBP 5 (4.4 versus 5.1 micrograms/ml for 20 min at 30 degrees C), and both proteins showed identical rates of hydrolysis of the [14C]penicilloyl-bound complex (t1/2 = 9.1 min). Surprisingly, the arginine-substituted protein was unable to catalyze D-alanine carboxypeptidase activity in vitro, which suggests that there is a substantial difference in the geometries of the peptide substrate and penicillin G within the active site of PBP 5.  相似文献   

4.
Xiang H  Xiang GY  Lu ZM  Guo L  Eckstein H 《Amino acids》2004,27(1):101-105
Summary. This paper describes the enzymatic synthesis of the C-terminal fragment H-Gly-Trp-Met-Asp-Phe-NH2 of cholecystokinin. Immobilized enzymes were used for the formation of all peptide bonds except thermolysin. Beginning the synthesis with phenylacetyl (PhAc) glycine carboxamidomethyl ester (OCam) and H-Trp-OMe by using immobilized papain as biocatalyst in buffered ethyl acetate, the dipeptide methyl ester was then coupled directly with Met-OEt·HCl by -chymotrypsin/Celite 545 in a solvent free system. For the 3+2 coupling PhAc-Gly-Trp-Met-OEt had to be converted into its OCam ester.The other fragment H-Asp(OMe)-Phe-NH2 resulted from the coupling of Cbo-Asp(OMe)-OH with H-Phe-NH2·HCl and thermolysin as catalyst, followed by catalytic hydrogenation.Finally PhAc-Gly-Trp-Met-Asp-Phe-NH2 was obtained in a smooth reaction from PhAc-Gly-Trp-Met-OCam and H-Asp(OMe)-Phe-NH2 with -chymotrypsin/Celite 545 in acetonitrile, followed by basic hydrolysis of the -methyl ester. The PhAc-group is removed with penicillin G amidase and CCK-5 is obtained in an overall isolated yield of 19.6%.  相似文献   

5.
Abstract We examined the penicillin-binding proteins (PBPs) of certain field strains of Streptococcus suis , as well as those from laboratory variants having different degrees of resistance to penicillin. Results indicated that (i) S. suis possesses three distinct groups of PBPs, arbitrarily named here PBP 1, PBP 2, and PBP 3, with approximate molecular weights of 97, 82, and 45 kDa respectively; (ii) PBP profiles of field strains of S. suis having different MICs (≤ 0.03 to 16.0 μg/ml) were not uniform (PBP 2 being difficult to detect in strains whose MICs exceeded 0.10 μg/ml, and PBP 3 which exhibited shifts in molecular weight of approximately 5 kDa); (iii) laboratory variant PBPs 1 and 2 showed decreased affinity for penicillin as compared to the parent strain in antibiotic competition experiments, even though the PBP profiles of both were similar. We suggest that PBP modifications (altered molecular weight and/or decreased affinity for penicillin) are involved in the mechanism of resistance to penicillin by S. suis .  相似文献   

6.
Abstract: The influence of dietary (n-3) fatty acids (such as eicosapentaenoic and docosahexaenoic acids) as found in fish oil on Na+ sensitivity and ouabain affinity of Na+, K+-ATPase isoenzymes (α1, α2, α3) was studied in whole brain membranes from weaned and adult rats fed diets for two generations. The long chain (n-3) fatty acids supplied by fish oil decreased the fatty acids of the (n-6) series compared with the standard diet, resulting in a decrease in the (n-6)/(n-3) molar ratio in both 21 - and 60-day- old rats. On the basis of ouabain titration, three inhibitory processes with markedly different affinities were associated with isoenzymes, i.e., low affinity (α1), high affinity (α2), and very high affinity (α3). It appears that the fish oil diet, in part via the modification of membrane fatty acid composition, altered the proportion and ouabain affinity of isoenzymes. Na+ sensitivity is the best criterion of physiologic change induced by fish oil diet. We calculated the Na+ activation for each isoenzyme and found one Na+ sensitivity and two Na+ sensitivities per isoenzyme in weanling and adult rats fed different diets, respectively. In contrast to α2 and α3, α1 appears insensitive to membrane change induced by fish oil diet. Fish oil diet, which is known to confer cardioprotection, induced significant modulation of Na+, K+-ATPase isoenzymes at the brain level.  相似文献   

7.
α-amy gene amplified from barley genome was cloned into MCS of pGAP9K to generate pGAP9K-α-amy which was then transformed into Pichia pastoris GS115 by electroporation. Transformants with multi-copies and high expression for the foreign gene were selected on G418 containing plate and expression analysis. The fermentation was carried out in a 50 l bioreactor with 20 l working volume, using a high-density cell culture method by continuously feeding with 50% glycerol-0.8% PTM4 to the growing culture for 54 h at 30°C. Under the control of GAP promoter (pGAP), α-amy gene was constitutively expressed. At the end of the fermentation, the α-AMY expression reached 125 mg/l, while the biomass growth was 186 as measured by absorption of 600 nm. The secreted α-AMY was purified to 97.5% by SP-Sepharose FF ion-exchange chromatography and affinity purification. The recombinant α-AMY showed activity on hydrolysis of starch.  相似文献   

8.
Four penicillins, procaine penicillin G (PPG), potassium penicillin G (KPG), sodium ampicillin (SA), and benzathine penicillin G (BPG) were administered intramuscularly at the rate of 300,000 units per rabbit. Estrous uterine tubal fluids were collected from rabbits during estrous and the concentrations of PPG, KPG, SA and BPG found in estrous rabbit uterine tubal fluid following two, 300,000 units intramuscular injections at 24 hour intervals were 0.20± .0017 U/ml and 0.44± .010 U/ml for PPG; 0.038± 0.006 and 0.033± 0.004 for KPG and 0.019± 0.004 and 0.18± 0.001 for SA and from 0.027± 0.002 to a low of 0.002± 0.002 U/ml after 96 hours post injection for BPG. Probenecid reduced the concentration of PPG and SA in uterine tubal fluid 50% when compared with nonprobenecid treated rabbits. A close correlation between the plasma and uterine tubal fluid concentrations of PPG, SA, and KPG was also found. The concentrations of PPG, KPG, and SA were reduced by about 50% during day 2, 3 and 4 of pregnancy.  相似文献   

9.
Abstract : Metabotropic glutamate receptors (mGluRs) are coupled to G protein second messenger pathways and modulate glutamate neurotransmission in the brain, where they are targeted to specific synaptic locations. As part of a strategy for defining the mechanisms for the specific targeting of mGluR1 α, rat brain proteins which interact with the intracellular carboxy terminus of mGluR1 α have been characterized, using affinity chromatography on a glutathione S -transferase fusion protein that contains the last 86 amino acids of mGluR1 α. Three of the proteins specifically eluted from the affinity column yielded protein sequences, two of which were identified as glyceraldehyde-3-phosphate dehydrogenase and β-tubulin ; the other was an unknown protein. The identity of tubulin was confirmed by western immunoblotting. Using a solid-phase binding assay, the mGluR1 α-tubulin interaction was shown to be direct, specific, and saturable with a K D of 2.3 ± 0.4 μ M . In addition, mGluR1 α, but not mGluR2/3 or mGluR4, could be coimmunoprecipitated from solubilized brain extracts with tubulin using anti-β-tubulin antibodies. However, mGluR1 α could not be coimmunoprecipitated with the tubulin binding protein gephyrin, nor could it be coimmunoprecipitated with PSD95. Collectively these data demonstrate that the last 86 amino acids of the carboxyl-terminal tail of mGluR1 α are sufficient to determine its interaction with tubulin and that there is an association of this receptor with tubulin in rat brain.  相似文献   

10.
The ability of penicillin to induce permeability changes inStaphylococcus aureus was markedly enhanced by selected gonadal steroids. Subinhibitory concentrations of penicillin and subinhibitory physiological concentrations of progesterone also acted in concert to reduce the incorporation of14C-alanine into staphylococcal mucopeptides by 18 to 21%. The minimal concentration of the antibiotic which significantly interfered with the incorporation of alanine into the staphylococcal mucopeptide was 3.30 units/ml. When progesterone was added to the system, the minimal concentration was lowered to 0.50 units/ml. The 17α-hydroxy-progesterone interfered with mucopeptide synthesis only when used in conjunction with penicillin. On the contrary, progesterone, dehydroepiandrosterone and β-estradiol exerted an additive effect in decreasing the incorporation of alanine into the staphylococcal mucopeptide. These results extend our previous studies and suggest an extracellular site of hormonal action located on the cell envelope.  相似文献   

11.
Evidence shows that probiotic bacteria can undergo substantial structural and morphological changes in response to environmental stresses, including antibiotics. Therefore, this study investigated the effects of penicillin G (0.015, 0.03, and 0.06 mg/l) on the morphology and adhesion of Lactobacillus acidophilus ATCC 4356, including the colony morphotype, biofilm production, hydrophobicity, H?O? formation, S-layer structure, and slpA gene expression. Whereas only smooth colonies grew in the presence of penicillin, rough and smooth colony types were observed in the control group. L. acidophilus ATCC 4356 was found to be hydrophobic under normal conditions, yet its hydrophobicity decreased in the presence of the antibiotic. No biofilm was produced by the bacterium, despite testing a variety of different culture conditions; however, treatment with penicillin G (0.015-0.06 mg/l) significantly decreased its production of H?O? formation and altered the S-layer protein structure and slpA gene expression. The S-protein expression decreased with 0.015 mg/l penicillin G, yet increased with 0.03 and 0.06 mg/l penicillin G. In addition, the slpA gene expression decreased in the presence of 0.015 mg/l of the antibiotic. In conclusion, penicillin G was able to alter the S-layer protein production, slpA gene expression, and certain physicochemical properties of Lactobacillus acidophilus ATCC 4356.  相似文献   

12.
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA.  相似文献   

13.
Kinetic schemes are established for degradation catalysed by Cd2+ ions in methanolic medium for penicillin G, penicillin V and cephalothin, a cephalosporin. Methanolysis of penicillin V and cephalothin occurs with the formation of a single substrate-metal ion intermediate complex, SM, while degradation of penicillin G occurs with the initial formation of two complexes with different stoichiometry, SM and S2M. In each case, degradation is of first order with respect to SM with rate constant values equal to 0.079 min−1, 0.120 min−1 and 0.166 min−1at 20, 25 and 30°C, respectively, for penicillin G; 0.061 min−1 at 20°C for penicillin V; and 2.0×10−3 min−1 at 20°C for cephalothin. Activation energy for the decomposition process of the SM intermediate for penicillin G was calculated to be about 5.5×104 J/mol. Equilibrium constant values between SM compound and S2M at 20°C (77.1 l/mol), 25°C (45.3 l/mol) and at 30°C (25.7 l/mol) were also calculated as well as the normal enthalpy of this equilibrium. With respect to the reaction products there is evidence that Cd2+ becomes part of their structure, forming complexes between Cd2+ and the product resulting from antibiotic methanolysis (L). Some characteristics of these complexes are discussed.  相似文献   

14.
The final step in the biosynthesis of beta-lactam antibiotics in Penicillium chrysogenum and Aspergillus nidulans involves removal of the L-alpha-aminoadipyl side chain from isopenicillin N (IPN) and exchange with a nonpolar side chain. The enzyme catalyzing this reaction, acyl-coenzyme A:isopenicillin N acyltransferase (acyltransferase), was purified from P. chrysogenum and A. nidulans. Based on NH2-terminal amino acid sequence information, the acyltransferase gene (penDE) from P. chrysogenum and A. nidulans were cloned. In both organisms, penDE was located immediately downstream from the isopenicillin N synthetase gene (pcbC) and consisted of four exons encoding an enzyme of 357 amino acids (approximately 40 kilodaltons [kDa]). The DNA coding sequences showed approximately 73% identity, while the amino acid sequences were approximately 76% identical. Noncoding DNA regions (including the region between pcbC and penDE) were not conserved. Acyltransferase activity from Escherichia coli producing the 40-kDa protein accepted either 6-aminopenicillanic acid or IPN as the substrate and made a penicillinase-sensitive antibiotic in the presence of phenylacetyl coenzyme A. Therefore, a single gene is responsible for converting IPN to penicillin G. The active form of the enzyme may result from processing of the 40-kDa monomeric precursor to a heterodimer containing subunits of 11 and 29 kDa.  相似文献   

15.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

16.
Enzymatic hydrolysis of penicillin G for production of 6-amino-penicillanic-acid (6-APA) was achieved by using penicillin G acylase as catalyst in an aqueous-methylisobutyl ketone (MIBK) system. The optimization was carried out and it was found that the best conversion was improved 10% more than the aqueous system, which was obtained at the conditions: initial pH 8.0, 5.0% (W/V) substrate (penicillin G), and temperature at 35°C, and the ratio of aqueous and organic phase was 3:1. The stability of the biocatalyst was studied at the operational conditions. After 5 cycles of semi-batch reactions, the residual activity of penicillin G acylase was 69.2% of the initial activity. There was no apparent loss of the yield of product. This process has a potential application in the industrial scale production of 6-APA because it simplifies the process effectively.  相似文献   

17.
CHOLINERGIC SITES IN SKELETAL MUSCLE: INTERACTION WITH CONCANAVALIN A   总被引:1,自引:0,他引:1  
Abstract– The interaction of normal and denervated skeletal muscle cholinergic sites with the lectin concanavalin A and concanavalin A-Sepharose are detailed. Concanavalin A blocks the binding of 125I-α-bungarotoxin to both the high and low affinity sets of cholinergic sites described previously. The characteristics of the block of 125I-α-bungarotoxin binding to the high affinity set (acetylcholine receptor) is not competitive. The data suggest that the concanavalin binds multivalently to the macro-molecular complex containing the ACh receptor site and sterically prevents the α-bungarotoxin binding. The interaction of both sets of cholinergic sites with concanavalin A-Sepharose was also studied. The macromolecule(s) containing both the high and low affinity sets of sites bind to the concanavalin A-Sepharose. The data indicate a multivalent association with the affinity resin. Following the affinity procedure, a partial purification in both sets of sites is effected. The equilibrium binding of 125I-diiodo-α-bungarotoxin to the preparations from the affinity procedure (both normal and denervated muscle) was examined. The KD of the α-bungarotoxin binding to the high affinity sets of sites (acetylcholine receptor) in both normal and denervated preparations changes from ∼10−9mol/l to ∼ 10−10 mol/l following purification. No change in the KD of the α-bungarotoxin binding to the low affinity set of sites was observed following purification. The 125l-α-bungarotoxin binding to the partially purified acetylcholine receptor was blocked by unlabelled α-bungarotoxin, concanavalin A, d-tubocurarine and carbamylcholine.  相似文献   

18.
A simple method was developed to release periplasmic penicillin G acylase from Escherichia coli BL21(DE3) during the fermentation process. More than 80% of the total penicillin G acylase was released into the broth when 3% (v/v) chloroform was added at 3 h after induction. The activity of extracellular penicillin G acylase reached 20699 U/l. This method was efficient and would facilitate further investigation of penicillin G acylase for industrial applications.  相似文献   

19.
Abstract Five penicillin-binding proteins have been isolated from detergent-solubilized membranes of Staphylococcus aureus and have been separated from other membrane proteins by covalent affinity chromatography on 6-aminopenicillanic acid-Sepharose. The PBPs were resolved by electrophoresis on SDS-polyacrylamide gels and their ability to bind radioactive penicillin assayed after transfer from the polyacrylamide gel onto nitrocellulose membrane filters. Synthesis of a β-lactam antibiotic, propionylampicillin and of [2,3-3H]propionylampicillin of high specific activity greatly facilitated the assay of penicillin-binding activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号