首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the ionophore, X537A, and caffeine on ATP-dependent calcium transport by fragmented sarcoplasmic reticulum were studied in the absence (calcium storage) or presence (calcium uptake) of calcium-precipitating anions. The ionophore caused rapid calcium release after calcium storage, the final level of calcium storage being the same whether a given concentration of X537A was added prior to initiation of the reaction or after calcium storage had reached a steady state. Although 10 to 12 muM X537A caused approximately 90% inhibition of oxalate-supported calcium uptake when added prior to the start of the reaction, this ionophore concentration caused only a small calcium release when added after a calcium oxalate precipitate had formed within the vesicles, and only slight inhibition of calcium uptake velocity when added during the calcium uptake reaction. When low initial calcium loads limited calcium uptake to 0.4 mumol of calcium/mg of protein, subsequent calcium additions in the absence of the ionophore led to renewed calcium uptake. Uptake of the subsequent calcium additions was not significantly inhibited by 10 to 12 muM X537A. These phenomena are most readily understood in terms of constraints imposed by fixed Cai (calcium ion concentration inside the vesicles) on the pump-leak situation in sarcoplasmic reticulum vesicles containing a large amount of an insoluble calcium precipitate, where most of the calcium is within the vesicles and Cai is maintained at a relatively low level. These constraints restrict calcium loss after calcium permeability is increased because calcium release can end when the calcium pump is stimulated by the increased Cao (calcium concentration outside the vesicles) so as to compensate for the increased efflux rate. In contrast, an increased permeability in vesicles that have stored calcium in the absence of a calcium-precipitating ion causes a much larger portion of the internal calcium store to be released. Under these conditions calcium storage capacity is low so that release of stored calcium is less able to raise Cao to levels where the calcium pump can compensate for the increased efflux rate. The constraints imposed by anion-supported calcium uptake explain the finding that more calcium is released by X537A or caffeine when these agents are added at higher levels of Cao, and that more calcium leaves the vesicles in response to a given increase in calcium permeability at higher Cai. Although such calcium release is amplified by increased Cao, the amplification is attributable to the constraints described above and does not represent a "calcium-triggered calcium release."  相似文献   

2.
Calcium fluxes across the membrane of sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The relationship between calcium exchange across the membrane of sarcoplasmic reticulum vesicles and phosphoenzyme (EP) was examined in calcium transport reactions using a limited amount of ATP as substrate. Rapid calcium influx and efflux (approximately 385 nmol.(mg.min)-1), measured in reactions in which ATP concentration fell from 20 microM, was accompanied by a shift in the equilibrium between an ADP-sensitive EP and an ADP-insensitive EP toward the former. Rapid exchange between ATP and ADP (approximately 1500 nmol.(mg.min)-1) was also observed under conditions where no significant incorporation of Pi into ATP took place, suggesting that ATP in equilibrium ADP exchange can occur without Cao in equilibrium Cai exchange. Ca2+ permeability during the calcium transport reaction was estimated in reactions carried out with acetylphosphate, which produces a hydrolytic product that does not participate in the backward reaction of the calcium pump. Under conditions where the calcium content exceeded 43 nmol.mg-1, a level that may reflect the binding of calcium ions to sites inside the sarcoplasmic reticulum, the rate constant for Ca2+ efflux was 0.33 min-1. These data allow the rate of passive Ca2+ efflux to be estimated as approximately 17 nmol.(mg.min)-1 at the time when calcium content was maximal and a rapid Cao in equilibrium Cai was observed. It is concluded that the majority of the rapid Ca2+ efflux is mediated by partial backward reactions of the calcium pump ATPase.  相似文献   

3.
Unidirectional calcium influx and efflux were evaluated in cardiac sarcoplasmic reticulum (SR) by 45Ca-40Ca exchange at steady state calcium uptake in the absence of calcium precipitating anions. Calcium efflux was partitioned into a pump-mediated efflux and a parallel passive efflux by separately measuring passive efflux referable to the steady state. Unidirectional and net ATP-ADP fluxes were measured using [3H]-ATP----ADP and [3H]-ADP----ATP exchanges. Methods are presented that take into account changing specific activities and sizes of the nucleotide pools during the measurement of nucleotide fluxes. The contribution of competent and incompetent vesicles to the unidirectional and net nucleotide fluxes was evaluated from the specific activity of these fluxes in incompetent vesicles and from the fraction of vesicles that were incompetent. The results indicate that, in cardiac SR, unidirectional calcium fluxes are larger than the unidirectional nucleotide fluxes contributed by competent vesicles. Because the net ATPase rate of competent vesicles is similar to the parallel passive efflux, it appears that cardiac SR Ca-ATPase tightly couples ATP hydrolysis to calcium transport even at static head, with a coupling ratio near 1.0.  相似文献   

4.
The formation and maintenance of Ca2+-filling levels by sarcoplasmic reticulum vesicles from euthyroid (control) and hypothyroid skeletal muscle were investigated using the Ca2+-indicator quin-2, at [Ca2+] in the medium [( Cao2+]) of 0.05-0.3 microM. Rapid ATP-dependent Ca2+ uptake resulted in a steady-state Ca2+-filling level, Cai2+, within one minute. This Ca2+ gradient was maintained for at least three minutes, during which less than 20% of the ATP was consumed. Cai2+ was maximal (120 nmol/mg) for [Cao2+] greater than 0.3 microM and decreased to 40 nmol/mg at [Cao2+] of 0.05 microM. Preparations from both experimental groups showed qualitatively and quantitatively the same relationship between Cai2+ and [Cao2+] at steady state, despite a significantly lower Ca2+-pump content of hypothyroid sarcoplasmic reticulum, which resulted in a 25% lower maximal (Ca2+ + Mg2+)-ATPase activity. Maintenance of the steady state, at all levels of Cai2+, was associated with net ATP consumption by the Ca2+ pump and cycling of Ca2+, which processes were 30% slower in the hypothyroid group as compared to the control group. Determination of the passive efflux of Ca2+, as well as the fraction of leaky or unsealed sarcoplasmic reticulum fragments, excluded either of these possibilities as an explanation for the relatively high (Ca2+ + Mg2+)-ATPase rates at steady state. On the basis of these and previously reported results, it is concluded that the maintenance of a Ca2+ gradient by sarcoplasmic reticulum under physiological conditions with respect to external [Ca2+] and the concentrations of ATP, ADP and Pi, is associated with the cycling of Ca2+ coupled to net ATP hydrolysis. Using the obtained data it is calculated that the sarcoplasmic reticulum may account for 20% of the resting metabolic rate in skeletal muscle. Consequently, together with the previously reported lower sarcoplasmic reticulum content of skeletal muscle in hypothyroidism, we calculate that about one third of the decrease in basal metabolic rate in this thyroid state can be related to the alterations of the sarcoplasmic reticulum.  相似文献   

5.
Calcium efflux from sarcoplasmic reticulum vesicles that have been equilibrated with 1-100 mM CaCl2 in the absence of ATP has two apparently first order components. The initial calcium content of each component increases with the total Ca content of the sarcoplasmic reticulum, which reaches 5, 24, and 80 nmol/mg of protein after equilibration with 1, 10, and 100 mM CaCl2, respectively. Initial rates of Ca efflux into a medium containing 10 mM EGTA increase in proportion to Ca in the loading medium up to 20 mM. Above 20 mM, efflux from the slow component clearly saturates, whereas efflux from the fast component continues to increase. The rate constant for the smaller, faster component to efflux (k congruent to 0.5 min-1) is not affected by changing the concentration of Ca either inside or outside the vesicles. The rate constant of the larger, slower component (k congruent to 0.05 min-1) is also unaffected by changes in internal Ca concentration. However, external [Ca2+] diminishes the rate constant of the slow component 6-10-fold. Inhibition by external [Ca2+] is characterized by cooperative interaction between two sites with an apparent Kd of 5.3 X 10(-6) M. The two components may represent two populations of sarcoplasmic reticulum vesicles that differ 10-fold in passive permeability to Ca when external [Ca2+] is less than 10(-6) M, and 60-100-fold when external [Ca2+] is greater than 10(-5) M. The passive permeability in one of these populations seems to be regulated by external, high affinity Ca binding sites.  相似文献   

6.
Recovery of calcium transport and calcium-activated ATPase activity was studied in relation to the retention of protein components in sarcoplasmic reticulum reconstituted after solubilization with deoxycholate and centrifugation, followed by removal of the detergent from the supernatant by dialysis. Control sarcoplasmic reticulum was similarly treated except for omission of deoxycholate. Maximum capacity for oxalate- and phosphate-supported calcium uptake was increased 2- to 3-fold in reconstituted sarcoplasmic reticulum compared to original and control. Calcium uptake velocity of the reconstituted sarcoplasmic reticulum was approximately 80% that of original and 90% of control sarcoplasmic reticulum. Calcium uptake/ATP hydrolysis ratio was approximately 2 in the original sarcoplasmic reticulum and decreased to approximately 1 in the control and reconstituted sarcoplasmic reticulum. Calcium storage in the absence of calcium-precipitating anion was approximately 85% in control and 70% in reconstituted sarcoplasmic reticulum, compared to the original sarcoplasmic reticulum. Ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid-induced calcium release after phosphate-supported calcium uptake was slower in reconstituted sarcoplasmic reticulum than in original or control sarcoplasmic reticulum. Polyacrylamide gel electrophoresis of original and control sarcoplasmic reticulum showed similar amounts of protein components of approximately 93,000, 59,000, 50,000, 30,000 to 37,000, and 20,000 to 26,000 daltons. Reconstituted sarcoplasmic reticulum, however, lost over 85% of the 50,000- and 20,000- to 26,000-dalton proteins while retaining most of its calcium transport functions.  相似文献   

7.
Determinants of calcium loading at steady state in sarcoplasmic reticulum   总被引:2,自引:0,他引:2  
The determinants of steady-state calcium loading by sarcoplasmic reticulum vesicles were evaluated by measuring the contribution of different pathways of calcium flux to the total calcium flux at steady state. The diffusional passive pathway was least significant at all calcium loads studied. Diffusional passive calcium flux was evaluated by a number of methods which gave comparable results and support its designation as passive and diffusional. These methods included (a) flux measurements with the simple pump-leak system which pertains when acetyl phosphate is used to load the vesicles; (b) flux measurements made after quenching the pump with EGTA; (c) flux measurements made after quenching the pump with glucose plus hexokinase; and (d) evaluation of the effect of pump activity on the efflux of mannitol. The calcium efflux not accounted for by the diffusional pathway was assigned to non-diffusional pathways. Efflux through the non-diffusional pathways required ATP, ADP and extravesicular Ca2+. The ADP-dependent, phosphoenzyme-independent pathway described by Beirao and DeMeis (Biochim. Biophys. Acta (1976) 433, 520-530) was not significantly involved in efflux. We propose that the level of calcium loading achieved at steady state is determined by the levels of the intermediates of the calcium pump which are established at this pseudo-equilibrium condition, these levels being determined by the concentrations of intravesicular and extravesicular calcium ([Ca2+]i and [Ca2+]), ATP and ADP. The different levels of calcium loading achieved by skeletal and cardiac sarcoplasmic reticulum are attributed to different nucleotide and calcium kinetics in these two types of sarcoplasmic reticulum and possibly to different intravesicular volumes. Differences in diffusional permeability are not responsible for differences in calcium loading.  相似文献   

8.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered. Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates. Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux wre inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore. After cleavage of the 100,000 dalton ATPase to 50,000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

9.
The ability of a sudden increase in pH to initiate a release of calcium from isolated skeletal and cardiac muscle sarcoplasmic reticulum following calcium accumulation in the absence of a precipitating anion (calcium binding) is described. In skeletal sarcoplasmic reticulum a sudden increase in pH caused a rapid release of accumulated calcium. In cardiac sarcoplasmic reticulum a sudden increase in pH before the calcium binding process was complete caused the release of a small amount of calcium at a relatively slow rate. A sudden change in pH after the completion of calcium binding failed to trigger a release of calcium. The effect of pH on oxalate supported calcium uptake and on unidirectional calcium efflux rate by cardiac sarcoplasmic reticulum was also studied. Both the rate of calcium uptake and of unidirectional calcium efflux increased as the pH was raised from 6.4 to 7.2, reflecting an increased permeability of the sarcoplasmic reticulum membrane to calcium. These results indicate that in cardiac muscle a sudden increase in pH is unlikely to be the in vivo signal for calcium release from the sarcoplasmic reticulum. However, the effect of pH on calcium uptake and efflux by cardiac sarcoplasmic reticulum may contribute to the negative inotropic effect of an acidosis on the heart.  相似文献   

10.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

11.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered.Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates.Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux were inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore.After cleavage of the 100 000 dalton ATPase to 50 000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

12.
Calcium binding to isolated adipocyte microsomes enriched in endoplasmic reticulum has been characterized. Binding was concentration-dependent, saturable, and totally dissociable. Steady state was reached within 20 min at all calcium concentrations tested. Three apparent classes of binding sites were identified in kinetic and steady state studies using calcium concentrations from 1 muM to 10 mM. The affinity constants (and maximum binding capacities) as determined by computer analysis for the three classes were 2.1 X 10(5) M-1 (0.28 nmol of calcium/mg of protein), 1.3 X 10(4) M-1 (1.1 nmol/mg), and 1.3 X 10(2) M-1 (35 nmol/mg). The dissociation rate constants for the high and intermediate affinity classes of sites were 1.6 X 10(-3) S-1, respectively, and the association rate constant for the high affinity sites was 8 X 10(2) M-1 S-1. The affinity constant calculated from the rate constants was 5.0 X 10(5) M-1 for the high affinity sites in agreement with the value obtained in studies at steady state. The three classes of binding sites were specific for calcium. Magnesium was a noncompetitive inhibitor of calcium binding to all three classes of sites with a Ki of 9 to 12 mM. Calcium binding at 1 muM calcium was 50% inhibited by 18 muM La3+, 600 muM Sr2+, or 2.7 mM Ba2+. These data represent the first analysis of passive calcium binding to endoplasmic reticulum from nonmuscular cells and the first report of corresponding rate constants for either endoplasmic or sarcoplasmic reticulum. The characteristics of the binding are consistent with the properties of calcium transport by endoplasmic reticulum of adipocytes. The characteristics and specificity of the calcium binding constitute further evidence that endoplasmic reticulum plays an important role in cellular calcium homeostasis.  相似文献   

13.
1. The effect was studied of local anesthetics (tetracaine, dibucaine, procaine and xylocaine) on the forward and the backward reactions of the calcium pump of skeletal muscle sarcoplasmic reticulum. 2. The inhibition of the rate of calcium uptake, the rate of calcium-dependent ATP splitting and the rate of calcium-dependent ATP-ADP phosphate exchange by sarcoplasmic reticulum in the presence of the above drugs is at least partially due to the inhibition of the phosphoprotein formation from ATP. 3. The rate of the ADP-induced calcium release from sarcoplasmic reticulum and the rate of ATP synthesis driven by the calcium efflux are inhibited on account of a reduction of the phosphoprotein formation by orthophosphate. 4. The phosphorylation of calcium transport ATPase by either ATP or orthophosphate is diminished by the local anesthetics owing to a reduction in the apparent calcium affinity of sarcoplasmic reticulum emmbranes on the outside and on the inside, respectively. 5. The drug-induced calcium efflux from calcium-preloaded sarcoplasmic reticulum vesicles, a reaction not requiring ADP, is probably not mediated by calcium transport ATPase.  相似文献   

14.
Ionomycin, a recently discovered calcium ionophore, inhibits the ATP-dependent active Ca2+ transport of rabbit sarcoplasmic reticulum vesicles at concentrations as low as 10(-8) to 10(-6) M. The effect is due to an increase in the Ca2+ permeability of the membrane which is also observed on liposomes. The inhibition of Ca2+ uptake is accompanied by an increase in the Ca2+-sensitive ATPase activity of sarcoplasmic reticulum vesicles.  相似文献   

15.
The endoplasmic reticulum from isolated rat adipocytes has the ability to actively accumulate calcium. The calcium uptake was characterized using the 20,000 X g supernatant (S1 fraction) of total cellular homogenate. Endoplasmic reticulum vesicles isolated from the S1 fraction as a 160,000 X g microsomal pellet prior to testing demonstrated little ability to accumulate calcium. The calcium uptake in the S1 fraction was localized to the endoplasmic reticulum vesicles by morphologic appearance, by the use of selective inhibitors of calcium uptake, and by high speed sedimentation of the accumulated calcium. The uptake was MgATP- and temperature-dependent and was sustained by the oxalate used as the intravesicular trapping agent. Uptake was linear with time for at least 30 min at all calcium concentrations tested (3 to 100 muM) and exhibited a pH optimum of approximately 7.0. The sulfhydryl inhibitor p-chloromercuribenzene sulfonate produced a dose-dependent inhibition of calcium uptake with total inhibition at 0.07 mumol/mg protein. Ruthenium red and sodium azide inhibited less than 5% of the uptake at concentrations (5 muM and 10 mM, respectively) which completely blocked calcium uptake by mitochondria isolated from the same cells. The Km for calcium uptake was 10 muM total calcium which corresponded to approximately 3.6 muM ionized calcium in the assay system. The maximum velocity of the uptake was 5.0 nmol (mg of microsomal protein)-1 (min)-1 at 24 degrees under the assay conditions used and exhibited a Q10 of 1.8. The uptake activity of the endoplasmic reticulum vesicles in the S1 fraction exhibited a marked time- and temperature-dependent lability which might account in part for the lack of uptake in the isolated microsomal fraction. This energy-dependent calcium uptake system would appear to be of physiologic importance to the regulation of intracellular calcium.  相似文献   

16.
Treatment of sarcoplasmic reticulum vesicles with aqueous n-alcohols caused inhibition of calcium uptake and enhancement of ATPase activity. With increasing alcohol concentration, the ATPase activity reached a maximum (in the case of n-butanol, at about 350 mM) and then decreased. The effect of n-butanol was extensively studied. The purified ATPase enzyme and leaky vesicles treated with Triton X-100 or phospholipase A showed high ATPase activity in the absence of n-butanol. With increasing n-butanol concentration, their atpase activities began to decrease above about 250 mM n-butanol, without any enhancement. In the presence of ATP, the turnover rate of calcium after calcium accumulation had reached a steady level was the same as that at the initial uptake. n-Butanol did not affect these rates. Kinetic analyses of these experiments were carried out. The mechanisms of calcium transport and of increase of ATPase activity in the presence of alcohol were interpreted as follows. After calcium accumulation had reached a steady level, fast influx and efflux continued; the influx was coupled with phosphorylated enzyme (E-P) formation and most of the efflux was coupled with rephosphorylation of ATP from ADP and E-P. The observed ATPase activity is the difference between these two reactions. If alcohol molecules make the vesicles leaky, calcium ions will flow out without ATP synthesis and the apparent ATPase activity will increase. The effect of alcohols on sarcoplasmic reticulum vesicles was separated into two actions. The enhancement of ATPase activity was attributed to a leakage of calcium ions from the vesicles, while the decrease of ATPase activity at higher concentrations of alcohols was attributed to denaturation of the ATPase enzyme itself. The two effects were interpreted in terms of equilibrium binding of alcohol molecules to two different sites of the vesicles; leakage and denaturation sites. Similar analysis was carried out for various n-alcohols from methanol to n-heptanol. The apparent free energies of binding of the methylene groups of n-alcohols were evaluated to be -863 cal/mol for the leakage site, and -732 cal/mol for the denaturation site.  相似文献   

17.
Bile salt-induced calcium fluxes in artificial phospholipid vesicles   总被引:1,自引:0,他引:1  
The ionic permeability of selected biological membranes is increased by bile salts. To examine changes in calcium permeability during the exposure of artificial membranes to bile salts, we investigated calcium uptake by unilamellar and multilamellar phospholipid vesicles. In the presence of 750 microM taurodeoxycholate, uptake of radiolabelled calcium by unilamellar vesicles increased 2.5-fold over control values. Calcium uptake by multilamellar vesicles as measured with a free calcium indicator, arsenazo III, increased 2.2- or 21-fold in the presence of 60 microM lithocholate or 3 beta-hydroxy-5-cholenoate, respectively. Results were directly influenced by experimental variables such as bile salt hydrophobicity, external calcium concentration, and the bile salt/lipid molar ratio. Observed membrane solubilization was minimal despite increased calcium permeability. Comparison of radiolabelled calcium uptake with radiolabelled sodium or radiolabelled rubidium uptake indicated that bile salt-dependent calcium uptake was 60-140-times greater than bile salt-dependent uptake of either monovalent cation. In an effort to delineate forces affecting calcium translocation, vesicles were exposed either to valinomycin, which induced an electrochemical gradient across the membrane, or to nigericin, which induced a proton gradient. Exposure to valinomycin minimally influenced bile salt-induced calcium uptake while exposure to nigericin significantly promoted uptake by 40-70%. The results suggest that bile salts promote calcium uptake by a mechanism which may be similar to those of other carboxylic ionophores.  相似文献   

18.
The effect of supernatants from cultures of mitogen-stimulated human mononuclear cells on calcium transport by sarcoplasmic reticulum was examined. Calcium transport was assayed by measuring the time course of calcium accumulation by sarcoplasmic reticulum incubated with supernatants from stimulated mononuclear cells was 20% less than that by vesicles exposed to control supernatants (P less than 0.001). In contrast, no difference in calcium-dependent ATPase activity was noted between vesicles incubated with either active or control supernatants. The results suggest that mononuclear cell factors disturb calcium transport in sarcoplasmic reticulum membrane.  相似文献   

19.
Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic smooth muscle sarcoplasmic reticulum vesicles was examined using the calcium indicator antipyrylazo III. Calcium release was initiated by addition of inositol 1,4,5-trisphosphate (IP3) to aortic vesicles 7 min after initiation of ATP-supported calcium uptake. Half-maximal calcium release occurred at 1 microM IP3, with maximal calcium release amounting to 25 +/- 2% of the intravesicular calcium (n = 12, 9 preparations). Ruthenium red (10-20 microM), which has been reported to block IP3-induced calcium release from skeletal muscle sarcoplasmic reticulum, did not inhibit aortic IP3-induced calcium release. Elevation of Mg2+ concentration from 0.06 to 7.8 mM inhibited aortic IP3-induced calcium release 75%, which contrasts with the Mg2+-insensitive IP3-induced calcium release from platelet reticular membranes. The IP3-dependence of aortic calcium release suggested that Mg2+ acted as a noncompetitive inhibitor. Thus, aortic sarcoplasmic reticulum vesicles contain an IP3-sensitive calcium pathway which is inhibited by millimolar concentrations of Mg2+, but which is not inhibited by Ruthenium red and so differs from the previously described IP3-sensitive calcium pathways in skeletal muscle and platelet reticular membranes.  相似文献   

20.
Calcium efflux from skeletal muscle fragmented sarcoplasmic reticulum was studied using a dilution technique and Millipore filtration. In the absence of Mg++ and external Ca++, addition of lmM adenosine triphosphate to the suspension resulted in an immediate loss of 26–55% of total vesicular calcium. The amount of calcium released was calculated to be sufficient to effect muscle contraction. After separation of the sarcoplasmic reticulum into light, intermediate and heavy vesicles, the light and heavy fractions were found to be only weakly responsive to adenosine triphosphate, whereas the intermediate fraction lost nearly half of its calcium. The significance of these results with respect to excitation-contraction coupling in muscle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号