首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions between the complement components and with immunoglobulins are greatly enhanced by lowering the ionic strength and become readily measurable by physical techniques. Thus, the binding between C1q and IgM was previously shown to be appreciable (k = 1 x 10(6) M-1) at 0.084 M ionic strength (Poon, P.H., Phillips, M.L., and Schumaker, V.N. (1985) J. Biol. Chem. 260, 9357-9365). We have now found that, at 0.128 M ionic strength, the binding between human C1- (the activated first component of complement) and IgM was strong at physiological concentrations (k = 1 x 10(7) M-1), while under the same conditions binding between C1q and IgM was not observed. To explore the nature of the interactions responsible for this enhanced binding by C1- over C1q, mixtures of the various subcomponents of C1- were studied alone and with IgM. C1r2 did not bind to C1q, even when the ionic strength was reduced to 0.098 M, nor did the presence of C1r2 enhance the binding of C1q to IgM. In contrast, two C1s2 independently bound to C1q (k = 1 x 10(6) M-1), and caused a marked increase in its association with IgM (k = 5 x 10(6) M-1) at 0.098 M ionic strength. No detectable interaction was found between C1s2 and/or C1r2 and IgM in the absence of C1q. Moreover, there was no detectable interaction between the C1(-)-like complex formed between C1r2C1s2 and the collagenous C1q stalks (pepsin-digested C1q) and IgM. These data suggest that the binding of C1s2 to C1q, either alone or together with C1r2, induces a conformational change in C1q which results in additional C1q heads binding to complementary sites on IgM.  相似文献   

2.
The binding of proflavine (D) to single stranded poly(A) (P) was investigated at pH 7.0 and 25 degrees C using T-jump, stopped-flow and spectrophotometric methods. Equilibrium measurements show that an external complex PD(I) and an internal complex PD(II) form upon reaction between P and D and that their concentrations depend on the polymer/dye concentration ratio (C(P)/C(D)). For C(P)/C(D)<2.5, cooperative formation of stacks external to polymer strands prevails (PD(I)). Equilibria and T-jump experiments, performed at I=0.1M and analyzed according to the Schwarz theory for cooperative binding, provide the values of site size (g=1), equilibrium constant for the nucleation step (K( *)=(1.4+/-0.6)x10(3)M(-1)), equilibrium constant for the growth step (K=(1.2+/-0.6)x10(5)M(-1)), cooperativity parameter (q=85) and rate constants for the growth step (k(r)=1.2x10(7)M(-1)s(-1), k(d)=1.1 x 10(2)s(-1)). Stopped-flow experiments, performed at low ionic strength (I=0.01 M), indicate that aggregation of stacked poly(A) strands do occur provided that C(P)/C(D)<2.5.  相似文献   

3.
The binding of Ru(phen)(2)dppz(2+) (dppz=dipyrido[3,2-a:2',3'-c]phenazine) to DNA was investigated at pH 7.0 and 25 degrees C using stopped-flow and spectrophotometric methods. Equilibrium measurements show that two modes of binding, whose characteristics depend on the polymer to dye ratio (C(P)/C(D)), are operative. The binding mode occurring for values of C(P)/C(D) higher than 3 exhibits positive cooperativity, which is confirmed by kinetic experiments. The reaction parameters are K=2 x 10(3)M(-1), omega=550, n=1, k(r)=(1.9+/-0.5) x 10(7)M(-1)s(-1) and k(d)=(9.5+/-2.5)x10(3)s(-1) at I=0.012 M. The results are discussed in terms of prevailing surface interaction with DNA grooves accompanied by partial intercalation of the dppz residue. The other binding mode becomes operative for C(P)/C(D)<3 and the equilibria analysis shows this is an ordinary intercalation mode (K=1.3 x 10(6) M(-1), n=1.5 at I=0.012 M and K=2 x 10(5) M(-1), n=1.2 at I=0.21 M). Similar behaviour is displayed by double-stranded poly(A).  相似文献   

4.
Soluble complexes were formed between C1q, a subunit of the first component of human complement, and four different Waldenstr?m IgM proteins at reduced ionic strengths. The equilibria between these complexes and the free proteins were studied in the ultracentrifuge. Complex formation was found to be a very sensitive function of the salt concentration, and at physiological ionic strength complex formation was negligible. The complexes were cross-linked with a water-soluble carbodiimide and separated by sucrose gradient centrifugation. Both 22 S 1:1 and 26 S 2:1 C1q X IgM complexes were formed; stoichiometry was established by cross-linking 125I-C1q with 131I-IgM and determining the ratios of the specific activities of the gradient-purified materials. The association process was studied as a function of protein concentration and was analyzed by Scatchard and Hill plots to yield stoichiometry, association constant, and degree of cooperativity. The results indicated that IgM has two identical and independent binding sites for C1q. The intrinsic association constant was found to vary between 10(6) M-1 at 0.084 M ionic strength to 10(4) M-1 at physiological ionic strength; the slope of the log-log plot gave a value of -6.0. The cross-linked complexes were examined by electron microscopy, and the C1q appeared to be attached to the IgM through the C1q heads, implying that the biologically significant binding sites were involved in this interaction. For the 2:1 complexes, the two C1q appeared to attach to opposite surfaces of the IgM, suggesting the presence of a pseudo-2-fold axis lying in the plane of the IgM disk.  相似文献   

5.
The study on the interactions between two anti-human immunodeficiency virus type 1 (anti-HIV-1) active compounds with trans-activation response (TAR) RNA by affinity capillary electrophoresis (ACE) with UV absorbance detection is presented. The results showed that the novel active molecules could interact with TAR RNA and inhibit the reproduce process of HIV-1. The binding constants were estimated by the change of migration time of the analytes through the change of concentrations of TAR RNA in the buffer solution. The yielded binding constants of 8.87 x 10(3)M(-1) for active compound C(3) and 8.42 x 10(3)M(-1) for MC(3) at 20.0 degrees C, 0.626 x 10(3)M(-1) and 0.644 x 10(3)M(-1) at 37.0 degrees C, respectively. The thermodynamic parameters Delta H and DeltaS were obtained and shown that both hydrophobic and electrostatic interaction played roles in the binding processes. The results showed that the presented method was an easy and simple method to evaluate the interaction of small molecules with some bioactive materials.  相似文献   

6.
Using surface plasmon resonance (SPR)-based biosensor analysis and fluorescence spectroscopy, the apparent kinetic constants, k(on) and k(off), and equilibrium dissociation constant, K(d), have been determined for the binding interaction between rabbit skeletal troponin C (TnC) and rabbit skeletal troponin I (TnI) regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). To carry out SPR analysis, a new peptide delivery/capture system was utilized in which the TnI peptides were conjugated to the E-coil strand of a de novo designed heterodimeric coiled-coil domain. The TnI peptide conjugates were then captured via dimerization to the opposite strand (K-coil), which was immobilized on the biosensor surface. TnC was then injected over the biosensor surface for quantitative binding analysis. For fluorescence spectroscopy analysis, the environmentally sensitive fluoroprobe 5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid (1,5-IAEDANS) was covalently linked to Cys98 of TnC and free TnI peptides were added. SPR analysis yielded equilibrium dissociation constants for TnC (plus Ca(2+)) binding to the C-terminal TnI regulatory peptides TnI(96-131) and TnI(96-139) of 89nM and 58nM, respectively. The apparent association and dissociation rate constants for each interaction were k(on)=2.3x10(5)M(-1)s(-1), 2.0x10(5)M(-1)s(-1) and k(off)=2.0x10(-2)s(-1), 1.2x10(-2)s(-1) for TnI(96-131) and TnI(96-139) peptides, respectively. These results were consistent with those obtained by fluorescence spectroscopy analysis: K(d) being equal to 130nM and 56nM for TnC-TnI(96-131) and TnC-TnI(96-139), respectively. Interestingly, although the inhibitory region peptide (TnI(96-115)) was observed to bind with an affinity similar to that of TnI(96-131) by fluorescence analysis (K(d)=380nM), its binding was not detected by SPR. Subsequent investigations examining salt effects suggested that the binding mechanism for the inhibitory region peptide is best characterized by an electrostatically driven fast on-rate ( approximately 1x10(8) to 1x10(9)M(-1)s(-1)) and a fast off-rate ( approximately 1x10(2)s(-1)). Taken together, the determination of these kinetic rate constants permits a clearer view of the interactions between the TnC and TnI proteins of the troponin complex.  相似文献   

7.
Interactions that stabilize the native state of a protein have been studied by measuring the affinity between subdomain fragments with and without site-specific residue substitutions. A calbindin D(9k) variant with a single CNBr cleavage site at position 43 between its two EF-hand subdomains was used as a starting point for the study. Into this variant were introduced 11 site-specific substitutions involving hydrophobic core residues at the interface between the two EF-hands. The mutants were cleaved with CNBr to produce wild-type and mutated single-EF-hand fragments: EF1 (residues 1--43) and EF2 (residues 44--75). The interaction between the two EF-hands was studied using surface plasmon resonance (SPR) technology, which follows the rates of association and dissociation of the complex. Wild-type EF1 was immobilized on a dextran matrix, and the wild-type and mutated versions of EF2 were injected at several different concentrations. In another set of experiments, wild-type EF2 was immobilized and wild-type or mutant EF1 was injected. Dissociation rate constants ranged between 1.1 x 10(-5) and 1.0 x 10(-2) s(-1) and the association rate constants between 2 x 10(5) and 4.0 x 10(6) M(-1) s(-1). The affinity between EF1 and EF2 was as high as 3.6 x 10(11) M(-1) when none of them was mutated. For the 11 hydrophobic core mutants, a strong correlation (r = 0.999) was found between the affinity of EF1 for EF2 and the stability toward denaturation of the corresponding intact protein. The observed correlation implies that the factors governing the stability of the intact protein also contribute to the affinity of the bimolecular EF1-EF2 complex. In addition, the data presented here show that interactions among hydrophobic core residues are major contributors both to the affinity between the two EF-hand subdomains and to the stability of the intact domain.  相似文献   

8.
Cooperative interaction of histone H1 with DNA.   总被引:4,自引:1,他引:3       下载免费PDF全文
The cooperative binding of histone H1 with DNA was studied using a fluorescently labelled histone H1. The titration data were analysed in terms of the large ligand model. The stoichiometric number, n = 65 +/- 10 bases/H1, was independent of NaCl concentration (0.02 - 0.35 M). The nucleation and the cooperative binding constants, K' and K, and the cooperativity parameter q were sensitive to salt concentration; K = 3.6 +/- 0.8 X 10(7) M-1 and q = 1.1 +/- 0.4 X 10(3) at 0.2 M NaCl. The dependence of K' on NaCl concentration revealed that 6 Na+ ions were released from DNA upon complex formation. An extrapolation of K' to 1M NaCl yielded a small value, K' = 5 +/- 2 M-1. Thus the binding of H1 is essentially electrostatic, being compatible with its independence of temperature. A calculation of K' based on the counterion release reproduced the salt concentration dependence of K'. Therefore, the binding of H1 is of an electrostatic territorial type. Thus, H1 may move along the DNA chain to a certain extent, when both salt concentration and the degree of saturation are sufficiently low. The condition is so restricted that the sliding would not play an important role in vivo. It was concluded from the DNA concentration independent binding isotherm that H1 can cooperatively bind onto a single DNA molecule. A simple power law dependence of the cooperativity parameter q upon NaCl concentration was found; q oc[NaCl]h with h = 0.72, though the physical basis of this dependence remains unknown.  相似文献   

9.
Biogenic polyamines, such as putrescine, spermidine, and spermine are small organic polycations involved in numerous diverse biological processes. These compounds play an important role in nucleic acid function due to their binding to DNA and RNA. It has been shown that biogenic polyamines cause DNA condensation and aggregation similar to that of inorganic cobalt(III)hexamine cation, which has the ability to induce DNA conformational changes. However, the nature of the polyamine.DNA binding at the molecular level is not clearly established and is the subject of much controversy. In the present study the effects of spermine, spermidine, putrescine, and cobalt(III)hexamine on the solution structure of calf-thymus DNA were investigated using affinity capillary electrophoresis, Fourier transform infrared, and circular dichroism spectroscopic methods. At low polycation concentrations, putrescine binds preferentially through the minor and major grooves of double strand DNA, whereas spermine, spermidine, and cobalt(III)hexamine bind to the major groove. At high polycation concentrations, putrescine interaction with the bases is weak, whereas strong base binding occurred for spermidine in the major and minor grooves of DNA duplex. However, major groove binding is preferred by spermine and cobalt(III)hexamine cations. Electrostatic attractions between polycation and the backbone phosphate group were also observed. No major alterations of B-DNA were observed for biogenic polyamines, whereas cobalt(III)hexamine induced a partial B --> A transition. DNA condensation was also observed for cobalt(III)hexamine cation, whereas organic polyamines induced duplex stabilization. The binding constants calculated for biogenic polyamines are K(Spm) = 2.3 x 10(5) M(-1), K(Spd) = 1.4 x 10(5) M(-1), and K(Put) = 1.02 x 10(5) M(-1). Two binding constants have been found for cobalt(III)hexamine with K(1) = 1.8 x 10(5) M(-1) and K(2) = 9.2 x 10(4) M(-1). The Hill coefficients indicate a positive cooperativity binding for biogenic polyamines and a negative cooperativity for cobalt(III)hexamine.  相似文献   

10.
Compound (1), which consists of an oxine and a pyridinium group, was synthesized as a metal-responsive DNA binding ligand. Two 1s coordinate to a Cu(II) to form a stable dimer (1(2)-Cu), even in the presence of DNA. The binding of 1 with sonicated calf thymus DNA was enhanced by ca. 10(3) times after forming the dimer; the binding constants were estimated to be 3.2 x 10(4)M(-1) and 2.4 x 10(7)M(-1) in the absence and the presence, respectively, of a half mole of Cu(II). The enormous acceleration of the binding is partly attributed to the generation of a dicationic charge by the formation of the dimer. High cooperativity between dimers could be also responsible; dimers would gather along the duplex as a template to form 1D spiral aggregates.  相似文献   

11.
Chemoattractants added to cells of the cellular slime mold dictyostelium discoideum induce a transient elevation of cyclic GMP levels, with a maximum at 10 s and a recovery of basal levels at approximately 25 s after stimulation. We analyzed the kinetics of an intracellular cGMP binding protein in vitro and in vivo. The cyclic GMP binding protein in vitro at 0 degrees C can be described by its kinetic constants K(1)=2.5 x 10(6) M(- 1)s(-1), k(-1)=3.5 x 10(-3)s(-1), K(d)=1.4 x 10(-9) M, and 3,000 binding sites/cell. In computer simulation experiments the occupancy of the cGMP binding protein was calculated under nonequilibrium conditions by making use of the kinetic constants of the binding protein and of the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions by making use of the kinetic constants of the binding protein and the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions the affinity of the binding protein for cGMP is determined by the rate constant of association (k(1)) and not by the dissociation constant (k(d)). Experiments in vivo were performed by stimulation of aggregative cells with the chemoattractant cAMP, which results in a transient cGMP accumulation. At different times after stimulation with various cAMP concentrations, the cells were homogenized and immediately thereafter the number of binding proteins which were not occupied with native cGMP were determined. The results of these experiments in vivo are in good agreement with the results of the computer experiments. This may indicate that: (a) The cGMP binding protein in vivo at 22 degrees C can be described by its kinetic constants: K(1)=4x10(6)M(-1)s(-1) and K(-1)=6x10(-3)s(-1). (b) Binding the cGMP to its binding protein is transient with a maximum at about 20-30 s after chemotactic stimulation, followed by a decay to basal levels, with a half-life of approximately 2 min. (c) The cGMP to its binding proteins get half maximally occupied at a cGMP accumulation of δ[cGMP](10)=2x10(-8) M, which corresponds to an extracellular stimulation of aggregative cells by 10(-10) M cAMP. (d) Since the mean basal cGMP concentration is approximately 2x10(-7) M, the small increase of cGMP cannot be detected accurately. Therefore the absence of a measurable cGMP accumulation does not argue against a cGMP function. (e) There may exist two compartments of cGMP: one contains almost all the cGMP of unstimulated cells, and the other contains cGMP binding proteins and the cGMP which accumulates after chemotactic stimulation. (f) From the kinetics of binding, the cellular responses to the chemoattractant can be divided into two classes: responses which can be mediated by this binding protein (such as light scattering, proton extrusion, PDE induction, and chemotaxis) and responses which cannot be (solely) mediated by this binding protein such as rlay, refractoriness, phospholipids methylation, and protein methylation.  相似文献   

12.
Site-directed mutagenesis was used to make amino acid substitutions at position 54 of skeletal troponin C, testing a relationship between the stability of helix C and calcium ion affinity at regulatory sites in the protein. Normally, threonine at position 54 is the first helical residue, or N-cap, of the C helix; where helices C and D, and the loop between, comprise binding site II. Mutations were made in the context of a previously described phenylalanine 29--> tryptophan (F29W) variant (Trigo-Gonzalez et al., Biochemistry 31, 7009-7015 (1992)), which allows binding events to be monitored through changes in the intrinsic fluorescence of the protein. N-Cap substitutions at position 54 were shown to attenuate the calcium affinity of regulatory sites in the N-terminal domain. Calcium affinities diminished according to the series T54 T54S > T54A > T54V > T54G with dissociation constants of 1.36 x 10(-6), 1.36 x 10(-6), 2.09 x 10(-6), 2.28 x 10(-6), and 4.24 x 10(-6) M, respectively. The steady state binding of calcium to proteins in the mutant series was seen to be monophasic and cooperative. Calcium off-rates were measured by stopped flow fluorescence and in every instance two transitions were observed. The rate constant of the first transition, corresponding to approximately 99% of the change in fluorescence, was between 900+/-20 and 1470+/-100 s(-1), whereas the rate constant of the second transitions was between 94+/-9 and 130+/-23 s(-1). The significance of two transitions remains unclear, though both rate constants occur on a time scale consistent with the regulation of contraction.  相似文献   

13.
Heredia VV  Thomson J  Nettleton D  Sun S 《Biochemistry》2006,45(24):7553-7562
The transient kinetics of glucose binding to glucokinase (GK) was studied using stopped-flow fluorescence spectrophotometry to investigate the underlying mechanism of positive cooperativity of monomeric GK with glucose. Glucose binding to GK was shown to display biphasic kinetics that fit best to a reversible two-step mechanism. GK initially binds glucose to form a transient intermediate, namely, E* x glucose, followed by a conformational change to a catalytically competent E x glucose complex. The microscopic rate constants for each step were determined as follows: on rate k1 of 557 M(-1) s(-1) and off rate k(-1) of 8.1 s(-1) for E* x glucose formation, and forward rate k2 of 0.45 s(-1) and reverse rate k(-2) of 0.28 s(-1) for the conformational change from E* x glucose to E x glucose. These results suggest that the enzyme conformational change induced by glucose binding is a reversible, slow event that occurs outside the catalytic cycle (kcat = 38 s(-1)). This slow transition between the two enzyme conformations modulated by glucose likely forms the kinetic foundation for the allosteric regulation. Furthermore, the kinetics of the enzyme conformational change was altered in favor of E x glucose formation in D2O, accompanied by a decrease in cooperativity with glucose (Hill slope of 1.3 in D2O vs 1.7 in H2O). The deuterium solvent isotope effects confirm the role of the conformational change in the magnitude of glucose cooperativity. Similar studies were conducted with GK activating mutation Y214C at the allosteric activator site that is likely involved in the protein domain rearrangement associated with glucose binding. The mutation enhanced equilibrium glucose binding by a combination of effects on both the formation of E* x glucose and an enzyme conformational change to E x glucose. Kinetic simulation by KINSIM supports the conclusion that the kinetic cooperativity of GK arises from slow glucose-induced conformational changes in GK.  相似文献   

14.
The heptose-less mutant of Escherichia coli, D31m4, bound complement subcomponent C1q and its collagen-like fragments (C1qCLF) with Ka values of 1.4 x 10(8) and 2.0 x 10(8) M-1 respectively. This binding was suppressed by chemical modification of C1q and C1qCLF using diethyl pyrocarbonate (DEPC). To investigate the role of lipopolysaccharides (LPS) in this binding, biosynthetically labelled [14C]LPS were purified from E. coli D31m4 and incorporated into liposomes prepared from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) [PC/PE/LPS, 2:2:1, by wt.]. Binding of C1q or its collagen-like fragments to the liposomes was estimated via a flotation test. These liposomes bound C1q and C1qCLF with Ka values of 8.0 x 10(7) and 2.0 x 10(7) M-1; this binding was totally inhibited after chemical modification of C1q and C1qCLF by DEPC. Liposomes containing LPS purified from the wild-strain E. coli K-12 S also bound C1q and C1qCLF, whereas direct binding of C1q or C1qCLF to the bacteria was negligible. Diamines at concentrations which dissociate C1 into C1q and (C1r, C1s)2, strongly inhibited the interaction of C1q or C1qCLF with LPS. Removal of 3-deoxy-D-manno-octulosonic acid (2-keto-3-deoxyoctonic acid; KDO) from E. coli D31m4 LPS decreases the binding of C1qCLF to the bacteria by 65%. When this purified and modified LPS was incorporated into liposomes, the C1qCLF binding was completely abolished. These results show: (i) the essential role of the collagen-like moiety and probably its histidine residues in the interaction between C1q and the mutant D31m4; (ii) the contribution of LPS, particularly the anionic charges of KDO, to this interaction.  相似文献   

15.
Elliott JL  Mogridge J  Collier RJ 《Biochemistry》2000,39(22):6706-6713
Bacillus anthracis secretes three proteins, which associate in binary combinations to form toxic complexes at the surface of mammalian cells. Receptor-bound protective antigen (PA) is proteolytically activated, yielding a 63 kDa fragment (PA(63)). PA(63) oligomerizes into heptamers, which bind edema factor (EF) or lethal factor (LF) to form the toxic complexes. We undertook a quantitative analysis of the interactions of EF with PA(63) by means of surface plasmon resonance (SPR) measurements. Heptameric PA(63) was covalently bound by amine coupling to an SPR chip, or noncovalently bound via a C-terminal hexahistidine tag on the protein to Ni(2+)nitrilotriacetate groups on the chip. Values of k(on) and k(off) for EF at 23 degrees C were approximately 3 x 10(5) M(-)(1) s(-)(1) and (3-5) x 10(-)(4) s(-)(1), respectively, giving a calculated K(d) of (1-2) x 10(-)(9) M. A similar value of K(d) (7 x 10(-)(10) M) was obtained when we measured the binding of radiolabeled EF to receptor-bound PA(63) on the surface of L6 cells (at 4 degrees C). Each of these analyses was also performed with LF and LF(N) (the N-terminal 255 residues of LF), and values obtained were comparable to those for EF. The similarity in the dissociation constants determined by SPR and by measurements on the cell surface suggests that the presence of the receptor does not play a large role in the interaction between PA(63) and EF/LF.  相似文献   

16.
A kinetic study of the quenching reaction of singlet oxygen ((1)O(2)) with catechins (catechin (CA), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), epigallocatechin gallate (EGCG)) and related compounds (5-methoxyresorcinol (MR), 4-methylcatechol (MC), and n-propyl gallate (PG)) was performed in ethanol at 35 degrees C. MR, MC, and PG are considered to be a model of resorcinol (A)-, catechol (B)-, and gallate (G)-rings in catechins, respectively. The overall rate constants, k(Q) (= k(q) + k(r), physical quenching + chemical reaction), for the reaction of catechins with (1)O(2) increased in the order of PG < MR < MC < CA < EC < EGC < ECG < EGCG. In a comparison of the rate constants, the relationship between quenching rates and chemical structures is discussed. The catechins which have lower peak oxidation potentials, E(P), show higher reactivities. It was observed that the chemical reaction (k(r)) is almost negligible in the quenching reaction of (1)O(2) by catechins. The k(Q) values of EGCG (1.47 x 10(8) M(-1) s(-1)) and ECG (7.81 x 10(7)) were found to be larger than those of lipids (1.3 x 10(5)-1.9 x 10(5) M(-1) s(-1)), amino acids (<3.7 x 10(7)), and DNA (5.1 x 10(5)). Further, these values are similar to those (1.15 x 10(8)-2.06 x 10(8) M(-1) s(-1)) of alpha- and gamma-tocopherol, ubiquinol-10, and gamma-tocopherol hydroquinone (plastoquinol model). The result suggests that catechins may contribute to the protection of oxidative damage in biological systems, by quenching (1)O(2).  相似文献   

17.
Several studies have suggested the implication of the classical complement pathway in the early stages of prion disease pathogenesis. To explore this hypothesis, surface plasmon resonance spectroscopy was used to test the ability of human C1q to recognize mouse PrP immobilized on a sensor chip. In this configuration, C1q bound avidly to PrP, with a K(D) of 5.4 nM (k(on) = 2.4 x 10(5) M(-1) s(-1); k(off) = 1.3 x 10(-3) s(-1)). The isolated C1q globular domain also bound to immobilized PrP, although with a higher K(D) (238 nM), due to a decreased k(on) (4.2 x 10(3) M(-1) s(-1)). Interaction was strongly enhanced by Cu(2+) ions, with a 10-fold increase in overall binding in the presence of 10 microM CuSO(4), without significant modification of the kinetic parameters. In contrast, using the same technique, no interaction was detected between immobilized C1q and soluble PrP. Likewise, gel filtration and chemical cross-linking analyses yielded no evidence for an interaction between these proteins in solution. Comparative analysis of the antigenic reactivity of soluble and immobilized PrP was performed by ELISA and surface plasmon resonance spectroscopy, respectively, using anti-PrP monoclonal antibodies. This analysis provides evidence that immobilized PrP undergoes a major conformational change in the sequence stretch 141GNDWEDRYYRENMYRYPNQ159 located in its C-terminal globular domain. It is concluded that immobilized PrP undergoes structural modifications that possibly mimic the conformational changes occurring during conversion to the pathological isoform and that C1q represents a natural sensor of these changes. Pathological implications of this recognition property are discussed in light of recent reports.  相似文献   

18.
We have designed and synthesized new optically active bisviologens ([BNMV](4+)) containing a binaphthyl moiety to examine the stereoselective photoinduced electron-transfer (ET) reactions with zinc-substituted myoglobin (ZnMb) by flash photolysis. The photoexcited triplet state of ZnMb, (3)(ZnMb)*, was successfully quenched by [BNMV](4+) ions to form the radical pair of a ZnMb cation (ZnMb(.+)) and a reduced viologen ([BNMV](.3+)), followed by a thermal ET reaction to the ground state. The rate constants ( k(q)) for the ET quenching at 25 degrees C were obtained as k(q)( R)=(2.9+/-0.2)x10(7) M(-1) s(-1) and k(q)( S)=(2.2+/-0.2)x10(7) M(-1) s(-1), respectively. The ratio of k(q)( R)/ k(q)( S)=1.3 indicates that the ( R)-isomer of the chiral viologen preferentially quenches (3)(ZnMb)*. On the other hand, the rate constants ( k) for the thermal ET reaction from [BNMV](.3+) to ZnMb(-+) at 25 degrees C were k( R)=(1.2+/-0.1)x10(8) M(-1) s(-1) and k( S)=(0.47+/-0.03)x10(8) M(-1) s(-1), respectively, and the ratio remarkably increased to k( R)/ k( S)=2.6. The activation parameters, Delta H(not equal) and Delta S(not equal), were determined from the kinetic measurements at various temperatures (10-30 degrees C) to understand the ET mechanisms. In the quenching reaction, the energy differences of Delta Delta H*(R- S) and T Delta Delta S*( R- S) at 25 degrees C were calculated to be -3.9+/-1.6 and -3.3+/-0.2 kJ mol(-1), respectively, whereas Delta Delta H*( R-S)=7.7+/-1.9 kJ mol(-1 )and T Delta Delta S*( R-S)=9.9+/-0.5 kJ mol(-1 )were found for the thermal ET reaction. Therefore, the thermal ET reaction to the ground state was proved to be dominated by the entropy term, and the large stereoselectivity may arise from the decrease in charge repulsion between donor and acceptor.  相似文献   

19.
We have studied the binding of inositol pentaphosphate (IPP) to the hemoglobins from two species of goose living at low and high altitudes, using the proton absorption method. Measurements were done at 25 and 37 degrees C in a pH range between 6.0 and 8.8. The bird hemoglobins show a high affinity and a binding stoichiometry of 1 IPP molecule/hemoglobin tetramer both in the ligated and unligated state, indicating the same binding site for IPP in oxy- and deoxyhemoglobin. The results indicate that the interaction of IPP with both geese hemoglobins is very similar. For the deoxyhemoglobins of both species the IPP-binding constant shows a strong pH dependence extending over a wide pH range (i.e. +/- 2 x 10(6) M at pH 8.8 and +/- 6 x 10(10) M at pH 6.0). The binding constant of IPP for the oxyhemoglobins shows a much weaker pH dependence (i.e. +/- 4 x 10(4) M at pH 8.8 and +/- 3 x 10(6) M at pH 6.0), indicating that the interaction of IPP with the goose hemoglobin is strongly dependent on the state of ligation of the protein. The IPP binding constants for the oxy- and deoxyhemoglobins are found to be in good agreement with the IPP-induced change in oxygen affinity of both hemoglobins as estimated from oxygen binding curves.  相似文献   

20.
Henzl MT  Larson JD  Agah S 《Biochemistry》2004,43(10):2747-2763
Rat alpha- and beta-parvalbumins have distinct monovalent cation-binding properties [Henzl et al. (2000) Biochemistry 39, 5859-5867]. Beta binds two Na(+) or one K(+), and alpha binds one Na(+) and no K(+). Ca(2+) abolishes these binding events, suggesting that the monovalent ions occupy the EF-hand motifs. This study compares alpha and beta divalent ion affinities in Na(+) and K(+) solutions. Solvent cation identity seriously affects alpha. In Hepes-buffered NaCl, at 5 degrees C, the macroscopic Ca(2+)-binding constants are 2.6 x 10(8) and 6.4 x 10(7) M(-1) and the Mg(2+) constants, 1.8 x 10(4) and 4.3 x 10(3) M(-1). In Hepes-buffered KCl, the Ca(2+) values increase to 2.9 x 10(9) and 6.6 x 10(8) M(-1) and the Mg(2+) values to 2.2 x 10(5) and 3.7 x 10(4) M(-1). Monte Carlo simulation of alpha binding data-employing site-specific constants and explicitly considering Na(+) binding-yields a K(Na) of 630 M(-1) and indicates that divalent ion-binding is positively cooperative. NMR data suggest that the lone Na(+) ion occupies the CD loop. Solvent cation identity has a smaller impact on beta. In Na(+), the Ca(2+) constants for the EF and CD sites are 2.3 x 10(7) and 1.5 x 10(6) M(-1), respectively; the Mg(2+) constants are 9.2 x 10(3) and 1.7 x 10(2) M(-1). In K(+), these values shift to 3.1 x 10(7) and 3.8 x 10(6) M(-1) and the latter to 1.4 x 10(4) and 2.9 x 10(2) M(-1). These data suggest that parvalbumin divalent ion affinity, particularly that of rat alpha, can be significantly attenuated by increased intracellular Na(+) levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号