首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   

2.
Primary structure of hydrogenase I from Clostridium pasteurianum   总被引:3,自引:0,他引:3  
J Meyer  J Gagnon 《Biochemistry》1991,30(40):9697-9704
Peptides obtained by cleavage of Clostridium pasteurianum hydrogenase I have been sequenced. The data allowed design of oligonucleotide probes which were used to clone a 2310-bp Sau3A fragment containing the hydrogenase encoding gene. The latter has been sequenced and was found to translate into a protein composed of 574 amino acids (Mr = 63,836), including 22 cysteines. C. pasteurianum hydrogenase is homologous to, but longer than, the large subunit of Desulfovibrio vulgaris (Hildenborough) [Fe] hydrogenase. It includes an additional N-terminal domain of ca. 110 amino acids which contains eight cysteine residues and which therefore could accommodate two of its postulated four [4Fe-4S] clusters. C. pasteurianum hydrogenase is most similar in length, cysteine positions, and sequence altogether to the translation product of a putative hydrogenase encoding gene from D. vulgaris (Hildenborough). Comparisons of the available [Fe] hydrogenase sequences show that these enzymes constitute a structurally rather homogeneous family. While they differ in the length of their N-termini and in the number of their [4Fe-4S] clusters, they are highly similar in their C-terminal halves, which are postulated to harbor the hydrogen-activating H cluster. Five conserved cysteine residues occurring in this domain are likely ligands of the H cluster. Possible ligation by other residues, and in particular by methionine, is discussed. The comparisons carried out here show that the H clusters most probably possess a common structural framework in all [Fe] hydrogenases. On the basis of the available data on these proteins and on the current developments in iron-sulfur chemistry, the H clusters possibly contain six to eight iron atoms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Resonance Raman spectra are reported for hydrogenase I and II from Clostridium pasteurianum. These spectra show overlapping bands with contributions from [4Fe-4S] clusters, known to be present in these enzymes, and from novel FeS centers of hitherto undefined structure. For hydrogenase I there are strong bands at 288 and 394 cm-1, which are seen in [2Fe-2S] proteins and in no other FeS species so far examined. In contrast these bands do not appear for hydrogenase II, whose resonance Raman spectrum is dominated by [4Fe-4S] cluster modes. These results provide the first structural information on the hydrogenase I FeS center involved in H2 activation and demonstrate structural differences between hydrogenase I and hydrogenase II.  相似文献   

4.
As in many other hydrogenases, the small subunit of the F420-reducing hydrogenase of Methanococcus voltae contains three iron-sulfur clusters. The arrangement of the three [4Fe-4S] clusters corresponds to the arrangement of [Fe-S] clusters in the [NiFeSe] hydrogenase of Desulfomicrobium baculatum. Many other hydrogenases contain two [4Fe-4S] clusters and one [3Fe-4S] cluster with a relatively high redox potential, which is located in the central position between a proximal and a distal [4Fe-4S] cluster. We have investigated the role of the central [4Fe-4S] cluster in M. voltae with regard to its effect on the enzyme activity and its spectroscopic properties. Using site-directed mutagenesis, we constructed a strain in which one cysteine ligand of the central [4Fe-4S] cluster was replaced by proline. The mutant protein was purified, and the [4Fe-4S] to [3Fe-4S] cluster conversion was confirmed by EPR spectroscopy. The conversion resulted in an increase in the redox potential of the [3Fe-4S] cluster by about 400 mV. The [NiFe] active site was not affected significantly by the mutation as assessed by the unchanged Ni EPR spectrum. The specific activity of the mutated enzyme did not show any significant differences with the artificial electron acceptor benzyl viologen, but its specific activity with the natural electron acceptor F420 decreased tenfold.  相似文献   

5.
Biotin synthase contains an essential [4Fe-4S]+ cluster that is thought to provide an electron for the cleavage of S-adenosylmethionine, a cofactor required for biotin formation. The conserved cysteine residues Cys53, Cys57 and Cys60 have been proposed as ligands to the [4Fe-4S] cluster. These residues belong to a C-X3-C-X2-C motif which is also found in pyruvate formate lyase-activating enzyme, lysine 2,3-aminomutase and the anaerobic ribonucleotide reductase-activating component. To investigate the role of the cysteine residues, Cys-->Ala mutants of the eight cysteine residues of Escherichia coli biotin synthase were prepared and assayed for activity. Our results show that six cysteines are important for biotin formation. Only two mutant proteins, C276A and C288A, closely resembled the wild-type protein, indicating that the corresponding cysteines are not involved in iron chelation and biotin formation. The six other mutant proteins, C53A, C57A, C60A, C97A, C128A and C188A, were inactive but capable of assembling a [4Fe-4S] cluster, as shown by M?ssbauer spectroscopy. The C53A, C57A and C60A mutant proteins are unique in that their cluster could not undergo reduction to the [4Fe-4S]+ state, as shown by EPR and M?ssbauer spectroscopy. On this basis and by analogy with pyruvate formate lyase-activating enzyme and the anaerobic ribonucleotide reductase-activating component, it is suggested that the corresponding cysteines coordinate the cluster even though one cannot fully exclude the possibility that other cysteines play that role as well. Therefore it appears that for activity biotin synthase absolutely requires cysteines that are not involved in iron chelation.  相似文献   

6.
Saunders AH  Booker SJ 《Biochemistry》2008,47(33):8467-8469
Quinolinate synthase (NadA) catalyzes a unique condensation reaction between dihydroxyacetone phosphate and iminoaspartate, yielding inorganic phosphate, 2 mol of water, and quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide and its derivatives. The enzyme from Escherichia coli contains a C (291)XXC (294)XXC (297) motif in its primary structure. Bioinformatics analysis indicates that only Cys297 serves as a ligand to a [4Fe-4S] cluster that is required for turnover. In this report, we show that the two remaining cysteines, Cys291 and Cys294, undergo reversible disulfide-bond formation, which regulates the activity of the enzyme. This mode of redox regulation of NadA appears physiologically relevant, since disulfide-bond formation and reduction are effected by oxidized and reduced forms of E. coli thioredoxin. A midpoint potential of -264 +/- 1.77 mV is approximated for the redox couple.  相似文献   

7.
Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called “Radical-SAM.” These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX3CX2C motif, and S-adenosyl-l-methionine (SAM) to generate a 5′-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed.  相似文献   

8.
The soluble hydrogenase (hydrogen:NAD+ oxidoreductase (EC 1.12.1.2) from Alcaligenes eutrophus has been purified to homogeneity by an improved procedure, which includes preparative electrophoresis as final step. The specific activity of 57 mumol H2 oxidized/min per mg protein was achieved and the yield of pure enzyme from 200 g cells (wet weight) was about 16 mg/purification. After removal of non-functional iron, analysis of iron and acid-labile sulphur yielded average values of 11.5 and 12.9 atoms/molecule of enzyme, respectively. p-Chloromercuribenzoate was a strong inhibitor of hydrogenase and apparently competed with NAD not with H2. Chelating agents, CO and O2 failed to inhibit enzyme activity. The oxidized hydrogenase showed an EPR spectrum with a small signal at g = 2.02. On reduction the appearance of a high temperature (50--77 K) signal at g = 2.04, 1.95 and a more complex low temperature (less than 30 K) spectrum at g = 2.04, 2.0, 1.95, 1.93, 1.86 was observed. The pronounced temperature dependence and characteristic lineshape of the signals obtained with hydrogenase in 80--85% dimethylsulphoxide demonstrated that iron-sulphur centres of both the [2Fe-2S] and [4Fe-4S] types are present in the enzyme. Quantitation of the EPR signals indicated the existence of two identical centres each of the [4Fe-4S] and of the [2Fe-2S] type. The midpoint redox potentials of the [4Fe-4S] and the [2Fe-2S] centres were determined to be -445 mV and -325 mV, respectively. Spin coupling between two centres, indicated by the split feature of the low temperature spectrum of the native hydrogenase around g = 1.95, 1.93, has been established by power saturation studies. On reduction of the [Fe-4S] centres, the electron spin relaxation rate of the [2Fe-2S] centres was considerably increased. Treatment of hydrogenase with CO caused no change in EPR spectra.  相似文献   

9.
Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.  相似文献   

10.
Ma K  Weiss R  Adams MW 《Journal of bacteriology》2000,182(7):1864-1871
The fermentative hyperthermophile Pyrococcus furiosus contains an NADPH-utilizing, heterotetrameric (alphabetagammadelta), cytoplasmic hydrogenase (hydrogenase I) that catalyzes both H(2) production and the reduction of elemental sulfur to H(2)S. Herein is described the purification of a second enzyme of this type, hydrogenase II, from the same organism. Hydrogenase II has an M(r) of 320,000 +/- 20,000 and contains four different subunits with M(r)s of 52,000 (alpha), 39,000 (beta), 30,000 (gamma), and 24,000 (delta). The heterotetramer contained Ni (0.9 +/- 0.1 atom/mol), Fe (21 +/- 1.6 atoms/mol), and flavin adenine dinucleotide (FAD) (0.83 +/- 0.1 mol/mol). NADPH and NADH were equally efficient as electron donors for H(2) production with K(m) values near 70 microM and k(cat)/K(m) values near 350 min(-1) mM(-1). In contrast to hydrogenase I, hydrogenase II catalyzed the H(2)-dependent reduction of NAD (K(m), 128 microM; k(cat)/K(m), 770 min(-1) mM(-1)). Ferredoxin from P. furiosus was not an efficient electron carrier for either enzyme. Both H(2) and NADPH served as electron donors for the reduction of elemental sulfur (S(0)) and polysulfide by hydrogenase I and hydrogenase II, and both enzymes preferentially reduce polysulfide to sulfide rather than protons to H(2) using NADPH as the electron donor. At least two [4Fe-4S] and one [2Fe-2S] cluster were detected in hydrogenase II by electron paramagnetic resonance spectroscopy, but amino acid sequence analyses indicated a total of five [4Fe-4S] clusters (two in the beta subunit and three in the delta subunit) and one [2Fe-2S] cluster (in the gamma subunit), as well as two putative nucleotide-binding sites in the gamma subunit which are thought to bind FAD and NAD(P)(H). The amino acid sequences of the four subunits of hydrogenase II showed between 55 and 63% similarity to those of hydrogenase I. The two enzymes are present in the cytoplasm at approximately the same concentration. Hydrogenase II may become physiologically relevant at low S(0) concentrations since it has a higher affinity than hydrogenase I for both S(0) and polysulfide.  相似文献   

11.
Protoporphyrin (IX) ferrochelatase catalyses the insertion of ferrous iron into protoporphyrin IX to form haem. These ferrochelatases exist as monomers and dimers, both with and without [2Fe-2S] clusters. The motifs for [2Fe-2S] cluster co-ordination are varied, but in all cases previously reported, three of the four cysteine ligands are present in the 30 C-terminal residues and the fourth ligand is internal. In the present study, we demonstrate that a group of micro-organisms exist which possess protoporphyrin (IX) ferrochelatases containing [2Fe-2S] clusters that are co-ordinated by a group of four cysteine residues contained in an internal amino acid segment of approx. 20 residues in length. This suggests that these ferrochelatases have evolved along a different lineage than other bacterial protoporphyrin (IX) ferrochelatases. For example, Myxococcus xanthus protoporphyrin (IX) ferrochelatase ligates a [2Fe-2S] cluster via cysteine residues present in an internal segment. Site-directed mutagenesis of this ferrochelatase demonstrates that changing one cysteine ligand into serine results in loss of the cluster, but unlike eukaryotic protoporphyrin (IX) ferrochelatases, this enzyme retains its activity. These data support a role for the [2Fe-2S] cluster in iron affinity, and strongly suggest convergent evolution of this feature in prokaryotes.  相似文献   

12.
The genome of Pyrococcus furiosus contains the putative mbhABCDEFGHIJKLMN operon for a 14-subunit transmembrane complex associated with a Ni-Fe hydrogenase. Ten ORFs (mbhA-I and mbhM) encode hydrophobic, membrane-spanning subunits. Four ORFs (mbhJKL and mbhN) encode putative soluble proteins. Two of these correspond to the canonical small and large subunit of Ni-Fe hydrogenase, however, the small subunit can coordinate only a single iron-sulfur cluster, corresponding to the proximal [4Fe-4S] cubane. The structural genes for the small and the large subunits, mbhJ and mbhL, are separated in the genome by a third ORF, mbhK, encoding a protein of unknown function without Fe/S binding. The fourth ORF, mbhN, encodes a 2[4Fe-4S] protein. With P. furiosus soluble [4Fe-4S] ferredoxin as the electron donor the membranes produce H2, and this activity is retained in an extracted core complex of the mbh operon when solubilized and partially purified under mild conditions. The properties of this membrane-bound hydrogenase are unique. It is rather resistant to inhibition by carbon monoxide. It also exhibits an extremely high ratio of H2 evolution to H2 uptake activity compared with other hydrogenases. The activity is sensitive to inhibition by dicyclohexylcarbodiimide, an inhibitor of NADH dehydrogenase (complex I). EPR of the reduced core complex is characteristic for interacting iron-sulfur clusters with Em approximately -0.33 V. The genome contains a second putative operon, mbxABCDFGHH'MJKLN, for a multisubunit transmembrane complex with strong homology to the mbh operon, however, with a highly unusual putative binding motif for the Ni-Fe-cluster in the large hydrogenase subunit. Kinetic studies of membrane-bound hydrogenase, soluble hydrogenase and sulfide dehydrogenase activities allow the formulation of a comprehensive working hypothesis of H2 metabolism in P. furiosus in terms of three pools of reducing equivalents (ferredoxin, NADPH, H2) connected by devices for transduction, transfer, recovery and safety-valving of energy.  相似文献   

13.
The genome sequence of Mycobacterium tuberculosis H37Rv revealed the presence of seven whiB-like open reading frames. In spite of several genetic studies on whiB genes, the biochemical properties of WhiB proteins are poorly understood. All WhiB-like proteins have four conserved cysteine residues, out of which two are present in a CXXC motif. We report for the first time the detailed biochemical and biophysical properties of M. tuberculosis WhiB4/Rv3681c and demonstrate the functional relevance of four conserved cysteines and the CXXC motif. UV-visible absorption spectra of freshly purified mWhiB4 showed the presence of a [2Fe-2S] cluster, whereas the electron paramagnetic resonance (EPR) spectra of reconstituted protein showed the presence of a [4Fe-4S] cluster. The iron-sulphur cluster was redox sensitive but stably co-ordinated to the protein even in the presence of high concentration of chaotropic agents. Despite primary sequence divergence from thioredoxin family proteins, the apo mWhiB4 has properties similar to thioredoxins and functions as a protein disulphide reductase, whereas holo mWhiB4 is enzymatically inactive. Apart from the cysteine thiol of CXXC motif the distantly placed thiol pair also contributes equally to the enzymatic activity of mWhiB4. A functional model of mWhiB4 in redox signaling during oxidative stress in M. tuberculosis has been presented.  相似文献   

14.
15.
The essential role of the small (HoxK) subunit of hydrogenase of Azotobacter vinelandii in H2 oxidation was established. This was achieved by modification of the two Cys-X2-Cys amino acid motifs at the N and C termini of the HoxK subunit (Cys-62, -65, -294, and -297). The Cys codons were individually mutated to Ser codons. Modifications in these two motifs resulted in loss of hydrogenase activity. At the N terminus, the mutations of the codons for the motif Cys-62-Thr-Cys-64-Cys-65 decreased the activity of hydrogenase to levels no higher than 30% of those of the parental strain. H2 oxidation with the alternate electron acceptors methylene blue and benzyl viologen was decreased. H2 evolution and exchange activities were also affected. Cys-64 possibly substitutes for either Cys-62 or Cys-65, allowing for partial activity. Mutation of the codons for Cys-294 and Cys-297 to Ser codons resulted in no hydrogenase activity. The results are consistent with alterations of the ligands of FeS clusters in the HoxK subunit of hydrogenase [corrected].  相似文献   

16.
The effect of several transition metals on the activity of Desulfovibrio gigas hydrogenase has been studied. Co(II) and Ni(II) at a concentration of 1 mM did not modify the activity of the enzyme; nor did they affect the pattern of activation/deactivation. Cu(II) inhibited the active hydrogenase, prepared by treatment with hydrogen, but had little effect on the 'unready' enzyme unless a reductant such as ascorbate was present, in which case inactivation took place either in air or under argon. Hg(II) also inactivated the enzyme irreversible in the 'unready' state without the requirement for reductants. The reaction of H2 uptake with methyl viologen was much more sensitive to inhibition than the H2/tritium exchange activity. EPR spectra of this preparation showed that the rates of decline were [3Fe-4S] signal greater than H2-uptake activity greater than Ni-A signal. Similar results were obtained when the protein was treated with Hg(II). The results demonstrate that the [3Fe-4S] cluster is not essential for H2-uptake activity with methyl viologen, but the integrity of [4Fe-4S] clusters is probably necessary to catalyze the reduction of methyl viologen with hydrogen. D. gigas hydrogenase was found to be highly resistant to digestion by proteases.  相似文献   

17.
APS reductase from Pseudomonas aeruginosa has been shown to contain a [4Fe-4S] cluster. Thiol determinations and site-directed mutagenesis studies indicate that the single [4Fe-4S] cluster contains only three cysteine ligands, instead of the more typical arrangement in which clusters are bound to the protein by four cysteines. Resonance Raman studies in the Fe-S stretching region are also consistent with the presence of a redox-inert [4Fe-4S](2+) cluster with three cysteinate ligands and indicate that the fourth ligand is likely to be an oxygen-containing species. This conclusion is supported by resonance Raman and electron paramagnetic resonance (EPR) evidence for near stoichiometric conversion of the cluster to a [3Fe-4S](+) form by treatment with a 3-fold excess of ferricyanide. Site-directed mutagenesis experiments have identified Cys139, Cys228, and Cys231 as ligands to the cluster. The remaining two cysteines present in the enzyme, Cys140 and Cys256, form a redox-active disulfide/dithiol couple (E(m) = -300 mV at pH 7.0) that appears to play a role in the catalytic mechanism of the enzyme.  相似文献   

18.

Background

Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii “Deep ecotype” that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity.

Results

We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions.

Conclusions

Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement.
  相似文献   

19.
The [NiFe] hydrogenase isolated from Desulfovibrio gigas was poised at different redox potentials and studied by M?ssbauer spectroscopy. The data firmly establish that this hydrogenase contains four prosthetic groups: one nickel center, one [3Fe-xS], and two [4Fe-4S] clusters. In the native enzyme, both the nickel and the [3Fe-xS] cluster are EPR-active. At low temperature (4.2 K), the [3Fe-xS] cluster exhibits a paramagnetic M?ssbauer spectrum typical for oxidized [3Fe-xS] clusters. At higher temperatures (greater than 20 K), the paramagnetic spectrum collapses into a quadrupole doublet with parameters magnitude of delta EQ magnitude of = 0.7 +/- 0.06 mm/s and delta = 0.36 +/- 0.06 mm/s, typical of high-spin Fe(III). The observed isomer shift is slightly larger than those observed for the three-iron clusters in D. gigas ferredoxin II (Huynh, B. H., Moura, J. J. G., Moura, I., Kent, T. A., LeGall, J., Xavier, A. V., and Münck, E. (1980) J. Biol. Chem. 255, 3242-3244) and in Azotobacter vinelandii ferredoxin I (Emptage, M. H., Kent, T. A., Huynh, B. H., Rawlings, J., Orme-Johnson, W. H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796) and may indicate a different iron coordination environment. When D. gigas hydrogenase is poised at potentials lower than -80 mV (versus normal hydrogen electrode), the [3Fe-xS] cluster is reduced and becomes EPR-silent. The M?ssbauer data indicate that the reduced [3Fe-xS] cluster remains intact, i.e. it does not interconvert into a [4Fe-4S] cluster. Also, the electronic properties of the reduced [3Fe-xS] cluster suggest that it is magnetically isolated from the other paramagnetic centers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号