首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In normal production practices, sows and gilts are inseminated at least twice during estrus because the timing of ovulation is variable relative to the onset of estrus. The objective of this study was to determine if a normal fertilization rate could be achieved with a single insemination of low sperm number given at a precise interval relative to ovulation. Gilts (n=59) were randomly assigned to one of three treatment groups: low dose (LD; one insemination, 0.5 x 10(9) spermatozoa), high dose (HD; one insemination, 3 x 10(9) spermatozoa) or multiple dose (MD; two inseminations, 3 x 10(9) spermatozoa per insemination). Twice daily estrus detection (06:00 and 18:00 h) was performed using fenceline boar contact and backpressure testing. Transrectal ultrasonography was performed every 6 h beginning at the detection of the onset of standing estrus and continuing until ovulation. Gilts in the LD and HD groups were inseminated 22 h after detection of estrus; MD gilts received inseminations at 10 and 22 h after detection of estrus. Inseminations were administered by using an insemination catheter and semen was deposited into the cervix. The uterus was flushed on Day 5 after the onset of estrus and the number of corpora lutea, oocytes, and embryos were counted. Time of insemination relative to ovulation was designated as 40 to >24 h, 24 to >12 h, and 12 to 0 h before ovulation and >0 h after ovulation. The LD gilts had fewer embryos (P<0.04), more unfertilized oocytes (P<0.05) and a lower fertilization rate (P<0.07) compared to MD gilts. The effects of time of insemination relative to ovulation and the treatment by time interaction were not significant. We conclude that a cervical insemination with low spermatozoa concentration may not result in acceptable fertility even when precisely timed relative to ovulation.  相似文献   

2.
Low dose insemination in synchronized gilts   总被引:4,自引:0,他引:4  
Krueger C  Rath D  Johnson LA 《Theriogenology》1999,52(8):1363-1373
Conventional insemination techniques in pigs require 2 to 3 x 10(9) sperm/dose. When using the latest high-speed sperm-sorting technology, one can still sort only about 5 to 6 million sperm of each sex per hour. The objective of the present study was to find the minimal sperm concentration at a low-insemination volume in pigs without diminishing fertilization rate and litter size using surgical deep intra-uterine insemination (IUI). Semen from 3 boars was collected and diluted with Androhep to 5 x 10(8), 1 x 10(8), 1 x 10(7), 5 x 10(6) or 1 x 10(6) sperm/0.5 ml. In trial 1, 109 prepuberal gilts were synchronized and surgically inseminated into the tip of each uterine horn 32 h or 38 h after hCG treatment or at the time of ovulation, respectively. Pregnant gilts were allowed to go to term. Pregnancy and farrowing rates did not differ significantly except at the lowest sperm concentration if inseminated 32 h or 38 h after hCG treatment (p < 0.05). No differences were found among insemination groups for the total number of piglets, number of piglets born alive, stillborn piglets, and mummified fetuses. In trial 2, 34 gilts were inseminated as described above 32 h after hCG. Additionally, 9 gilts were inseminated once nonsurgically with 1 x 10(9) sperm as controls. Gilts were slaughtered 48 h after insemination, and embryos were recovered. Embryos were cultured in NCSU 23 (120 h), evaluated morphologically and stained with fluorescent dye (Hoechst 33342) to visualize nuclei. Recovery rates varied between 71.4% and 84.4%. Fertilization rate of the lowest sperm concentration (1 x 10(6) sperm/horn) differed significantly (p < 0.05) from all other groups. Cleavage rates at specific developmental stages did not differ. After 5 days of in vitro culture, embryos developed to morulae and blastocysts. No differences were found for these stages. In conclusion, no major differences were found between insemination groups as long as the sperm dosage was at least 10 million sperm per gilt. The low volume was sufficient for successful deep intra-uterine insemination. Embryo development was comparable to the controls.  相似文献   

3.
The present study evaluates the effectiveness of the transcervical deep intrauterine insemination (DUI) with a reduced number of frozen-thawed boar spermatozoa in weaned sows. DUI was performed using a specially designed flexible device (length 180 cm, outer diameter 4mm, working channel 1.8mm, working channel's volume 1.5 ml) that was inserted through an artificial insemination spirette to cross the cervix lumen and moved into one uterine horn as far as possible. Spermatozoa diluted in 7.5 ml of BTS were flushed into the uterine horn by a syringe attached to the working channel. In Experiment 1, 111 hormonally treated (eCG/hCG) weaned sows were inseminated once using one of the following three regimens: (1) DUI with frozen-thawed spermatozoa (1000 x 10(6) cells per dose; n=49); (2) DUI with fresh semen (150 x 10(6) cells per dose; n=29, as control of DUI procedure); and (3) cervical insemination with frozen-thawed spermatozoa (6000 x 10(6) cells diluted in 100ml; n=33). No differences (P>0.05) were found for farrowing rates (77.55, 82.76, and 75.76, respectively) or litter sizes (9.31+/-0.41, 9.96+/-0.32, and 9.60+/-0.53 piglets born per litter, respectively) among the groups. In Experiment 2, DUI was performed on the spontaneous estrus in weaned sows (2-6 parity) with 1000 x 10(6) frozen-thawed (40 sows) or 150 x 10(6) fresh spermatozoa (38 sows). The farrowing rate of sows inseminated twice with frozen-thawed spermatozoa (70%) was significantly (P<0.05) lower than with fresh semen (84.21%). No significant difference (P>0.05) was found in litter size between frozen-thawed spermatozoa (9.25+/-0.23 piglets born per litter) and fresh semen (9.88+/-0.21 piglets born per litter). These preliminary results indicate that application of DUI provides acceptable fertility in weaned sows using a relatively low number of frozen-thawed spermatozoa.  相似文献   

4.
Precise data on fertility results following peri- and postovulatory insemination in spontaneously ovulating gilts is lacking. Using transcutaneous sonography every 4 h during estrus as a tool for diagnosis of ovulation, the effects of different time intervals of insemination relative to ovulation were investigated with liquid semen (Experiment 1, n=76 gilts) and frozen semen (Experiment 2, n=80 gilts). In Experiment 3 (n=24 gilts) the number of Day-28 embryos related to the various intervals between insemination and ovulation was determined after the use of liquid semen. Using liquid semen the fertilization rates based on Day-2 to Day-5 embryos and the number of accessory spermatozoa decreased significantly in gilts inseminated with 2 x 10(9) spermatozoa per dosage in intervals of more than 12 h before or more than 4 h after ovulation. In the time interval 4 to 0 h before ovulation, comparable fertilization rates were obtained using frozen semen (88.1%) and liquid semen (92.5%). Fertilization rates and numbers of accessory spermatozoa decreased significantly when gilts were inseminated with frozen semen more than 4 h before or 0 to 4 h after the detection of ovulation. The percentage of Day-28 embryos was significantly higher following preovulatory insemination compared to inseminations 0 to 4 h and 4 to 8 h after ovulation. It is concluded that the optimal time of insemination using liquid semen is 12 to 0 h before ovulation, and 4 to 0 h before ovulation using frozen semen. The results stress the importance of further research on sperm transport and ovulation stimulating mechanisms, as well as studies on the time of ovulation relative to estrus-weaning intervals and estrus duration.  相似文献   

5.
The objectives of this study were to determine the optimal time of insemination in the pre-ovulatory period (from 32 to 0 h before ovulation) and to evaluate once-daily versus twice-daily inseminations in gilts. In Experiment 1, pre-puberal gilts (n=102) were observed for estrus every 8h and ultrasonography was performed every 8h from the onset of estrus to confirmation of ovulation. The gilts were inseminated once with 4 x 10(9) spermatozoa at various intervals prior to ovulation. Pregnancy detection was conducted 24 days after AI and gilts were slaughtered 4-6 days later. Corpora lutea and the number of viable embryos were counted and the embryo recovery rate was calculated (based on the percentage of corpora lutea). Inseminations performed <24h before ovulation resulted in a higher embryo recovery rate (P=0.02) and produced 2.1 more embryos (P=0.01) than inseminations >or=24h before ovulation. However, the pregnancy rate was reduced when inseminations were performed >16 h before ovulation (P=0.08). In Experiment 2, pre-puberal gilts (n=105) were observed for estrus every 12h and ultrasonography was performed every 12h from the onset of estrus to confirmation of ovulation. Gilts were inseminated (with 4 x 10(9) spermatozoa) 12h after the onset of estrus, with inseminations repeated either every 12h (twice-daily) or 24h (once-daily) during estrus. The gilts were allowed to farrow. There were no differences (between gilts bred twice-daily versus once-daily) for return to estrus rate (P=0.36) and adjusted farrowing rate (P=0.19). However, gilts inseminated once-daily had 1.2 piglets less than those inseminated twice-daily (P=0.09). In conclusion, gilts should be inseminated up to 16 h before ovulation, as intervals >16 h reduced pregnancy rate and litter size.  相似文献   

6.
Brillard JP 《Theriogenology》1990,33(5):1021-1029
When hens were inseminated intravaginally with 200 million spermatozoa, the largest number of sperm cells reaching the infundibulum was observed 2 d after insemination (41.64 x 10(3) per female), even though a few sperm (0.23 x 10(3) per female) had already been detected within the first hour following insemination. After 2 d, the number of spermatozoa rapidly decreased and only 4.09 x 10(3) sperm per female were present in the infundibulum on Days 14 and 21, respectively. However, when the same dose of spermatozoa was inseminated intramagnally, a large number of spermatozoa (8.01 x 10(3) per female) was found in the infundibulum within 4 h after insemination. A parallel study showed that extensive migration of spermatozoa towards the abodminal cavity had already occurred.  相似文献   

7.
New biotechnologies, such as sperm-mediated gene transfer (SMGT), spermatozoa freezing and spermatozoa sorting have improved the possibilities to produce animals with desirable features. The main problem associated with these technologies is the scarce availability of spermatozoa for insemination. The objective of this study was to develop a laparoscopic insemination (LI) technique in gilt that allows the use of low semen doses resulting in high fertilization rates (FR) and minimal distress to the animal; the efficiency of this technique was compared to conventional artificial insemination (AI). Ten gilts were inseminated 36 h post hCG treatment near both utero-tubal junctions (UTJ) with 1.5 x 10(9)spermatozoa/5 mL per horn and 10 gilts (C) underwent conventional AI. Embryos were collected either at two to four cell stage (LI, n = 5; C, n = 5) for determination of fertilization rate or at day 6 for evaluation of developmental competence (LI, n = 5; C, n = 5). LI gilts showed a slightly higher FR than control animals. In a second trial, 24 gilts underwent LI with varying doses (1.5 x 10(8), 1.5 x 10(7), 1 x 10(7), 5 x 10(6) or 1 x 10(6)) of semen. Two to four stage embryos were collected and FR was evaluated in each tube. FR obtained with the lowest dose was significantly different from that with other dosages (P < 0.05). Embryos were cultured in vitro to blastocyst stages (percentage of blastocysts: 79.2 +/- 3.6%). In a third trial, five gilts were inseminated with semen processed by SMGT technique; both FR (86.1 +/- 9.9%) and transgene protein expression were satisfactory. In conclusion, this study shows that LI can be a useful tool for reducing doses of insemination, without affecting the efficiency of fertilization; this technique could have a wide range of biotechnological applications.  相似文献   

8.
A new artificial insemination device for semen deposition near the utero-tubal junction in cattle (Ghent device) has been developed at the Ghent University (Belgium). In this study, the effect of the new insemination device on sperm quality was evaluated. Moreover, in a field trial 4064 dairy cows were inseminated by 12 inseminators to examine the efficacy of the device under field conditions.The Ghent device is a disposable plastic catheter which can easily follow the curvature of the uterine horns and thus reach the utero-tubal junction (UTJ). After expulsion of the inseminate with 0.7 or 1.7 ml of air, 19.0% of the insemination dose remained in the insemination catheter. Sperm loss can be diminished to 9.0% of the original insemination dose when the insemination catheter is flushed with 0.1 ml of air, followed by 0.6 ml of physiological saline solution. No toxic effect of the insemination catheter on sperm quality or fertilizing capacity was found. In the field trial, sperm were inseminated in dairy cattle which were divided in three groups. The first group was inseminated in the uterine body with the conventional insemination device, the second group in the uterine body with the Ghent device, and the third group in the tip of both uterine horns with the Ghent device. Each insemination was performed with 10 x 10(6) to 15 x 10(6) frozen-thawed spermatozoa. The pregnancy rates (PRs) were significantly affected by the insemination technique (P = 0.02), by the inseminator (P = 0.01), by heifer or cow (P < 0.01), and by the insemination number (P < 0.01). Pregnancy rates obtained with the conventional insemination device (57.6%) were significantly better than those obtained with the Ghent device in the uterine body (52.7%) (P < 0.01), but did not differ significantly from those obtained after deep insemination into both uterine horns (53.8%) (P = 0.27). It can be concluded that the Ghent device is suitable for utero-tubal junction insemination of dairy cattle under field conditions. Whether the Ghent device is also suitable for insemination with lower insemination doses is at present under investigation.  相似文献   

9.
Progestagen-impregnated vaginal sponges + PMSG were used to synchronize oestrus in crossbred adult ewes which were inseminated 56 h after sponge removal with 0.5 ml diluted semen containing 400, 200, 100, 50 or 25 x 10(6) spermatozoa per insemination. The diluent was skim milk-citrate or pooled seminal plasma. There was no difference in reproductive performance due to the insemination medium. Fertility (no. of ewes lambing) after insemination of 400 or 200 x 10(6) spermatozoa was 68% and was similar to that observed after natural service at progestagen-induced oestrus. When less than or equal to 100 x 10(6) spermatozoa were inseminated, fertility fell markedly and the number of lambs per ewe inseminated decreased. A decrease in litter size also occurred. The data indicate that insemination of 200 x 10(6) spermatozoa, i.e. less than 10% of the number in a single ram ejaculate, allows normal conception rates in progestagen-treated ewes.  相似文献   

10.
A study was conducted to investigate the effects of prefreezing sperm concentration using two extenders on post-thaw survival and acrosomal status of ram spermatozoa (Experiment 1) and fertility after intrauterine insemination with differing doses of semen (Experiment 2). In autumn (Northern hemisphere), semen was collected by artificial vagina from 8 adult Leccese rams and ejaculates of good quality semen were pooled. Two extender systems for cryopreservation were considered, one based on milk-lactose egg yolk (Milk-LY) and the other based on tris-fructose egg yolk (Tris-FY). Experiment 1 (2 x 6 factorial scheme) examined the in vitro characteristics of spermatozoa in relation to the Milk-LY and Tris-FY extenders and six prefreezing sperm concentrations (50, 100, 200, 400, 500 and 800 x 10(6) spermatozoa/mL). Experiment 2 (2 x 4 factorial) evaluated the influence of the Milk-LY vs Tris-FY extenders and four doses (20, 40, 80 and 160 x 10(6) spermatozoa/0.25 mL) corresponding to prefreezing spermatozoa concentrations of 100, 200, 400 and 800 x 10(6) spermatozoa/mL, on fertility of ewes inseminated in uterus by laparoscope. Prefreezing sperm concentration influenced (P < 0.01) freezability of spermatozoa and affected negatively all the in vitro parameters at 800 x 10(6) spermatozoa/mL. Overall, Milk-LY tended to ensure higher viability and acrosomal integrity of spermatozoa after thawing at the intermediate sperm densities (range 100 to 500 x 10(6) spermatozoa/mL). At 500 x 10(6) spermatozoa/mL concentration corresponded the best condition for survival of spermatozoa (71.2%), acrosome integrity (71.5%) and acrosomal loss (6.0%). At the lowest sperm concentration (50 x 10(6) spermatozoa/mL), Tris-FY resulted in a higher survival rate than Milk-LY (61.3%, P < 0.05) and lower acrosomal loss (9.7%, P < 0.05). Milk-LY supported spermatozoa motility better than Tris-FY after incubation at sperm concentration between 50 and 400 x 10(6) spermatozoa/mL (0.05 > P < 0.01). Semen doses of 20 to 40 x 10(6) spermatozoa/ewe provided satisfactory fertility rates (64 to 81%). The increase of inseminate doses to 160 x 10(6) spermatozoa/ewe failed to improve fertility, actually tending to decrease lambing rates.  相似文献   

11.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

12.
Two trials were conducted to ascertain fertilization rate, embryo quality and numbers of transferable embryos in superovulated heifers and cows inseminated with sexed sperm. Inseminates contained 2 x 10(6), 10 x 10(6) or 20 x 10(6) total sperm enriched for the X- or Y-chromosome ( approximately 90%) by flow cytometry/cell sorting. Non-sexed inseminates contained 40 x 10(6) total sperm. Donors in each trial were allocated to one of each of the bulls included in that study. Each donor was inseminated with frozen/thawed sperm from the same bull for each treatment in successive courses of superstimulation with twice daily i.m. injections of FSH for 4 d. Heifers and cows were inseminated 12 and 24 h after visually observed standing estrus in Trial 1. In Trial 2, a single timed inseminate was used 70-72 h following PGF(2alpha). Ova/embryos were collected non-surgically 7-7.5 d after insemination. In both trials, fewer ova were fertilized with sexed versus non-sexed treatments and with 2 x 10(6) sexed sperm compared to higher doses (P < 0.05). However, insemination of 20 x 10(6) total sexed sperm of >or=90% purity resulted in similar numbers of transferable embryos of the desired sex compared to that for non-sexed sperm.  相似文献   

13.
Following synchronisation of oestrus using FGA and PMSG, ewes were inseminated by either the conventional cervical (CC) method or directly into the uterus by laparoscopy (LI). The CC method was carried out either at 48 and 60 hours following progestagen withdrawal with 480 x 10(6) spermatozoa per inseminate or once only at 56 hours with 600 x 10(6) spermatozoa. The laparoscopic method was performed at 52 hr using 48 x 10(6) spermatozoa per ewe. In the first two trials eggs were recovered at laparotomy. The egg recovery rate was significantly lower (P<0.05) for those ewes which had been inseminated by the LI method (74%) compared with those inseminated by the CC method (85%); fertilization rates were not significantly different (92% and 89% respectively). In the third trial 20 ewes were bled to determine their periovulatory LH concentrations and the timing of peak LH concentrations correlated with the outcome of each insemination. Ewes inseminated using laparoscopy did not conceive when their LH surge occurred >58 hr after progestagen withdrawal. In this and in the final experiment, the combined pregnancy rates and litter sizes (assessed radiographically) were 67% (n = 51) and 2.21 (n = 34) for the CC method and 75% (n = 48) and 1.97 (n = 36) for the LI method (P>0.05).  相似文献   

14.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

15.
The aim of these experiments was to investigate the effect of duration of IVM, duration of gamete co-incubation, and of sperm dose on the development of bovine embryos in vitro. In addition, the speed of sperm penetration of six bulls of known differing in vivo and in vitro fertility was examined. In Experiment 1, following IVM for 16, 20, 24, 28 or 32 h, cumulus oocyte complexes (COCs) were inseminated with 1 x 10(6) spermatozoa/ml. After 24 h co-incubation, presumptive zygotes were denuded and placed in droplets of synthetic oviduct fluid (SOF). In Experiment 2, following IVM and IVF, presumptive zygotes were removed from fertilization wells at 1, 5, 10, 15 or 20 h post insemination and placed in culture as described above. In Experiment 3, following IVM, COCs were inseminated with sperm doses ranging from 0.01 x 10(6) to 1 x 10(6) spermatozoa/ml. Following co-incubation for 24 h, presumptive zygotes were placed in culture as described above. In Experiment 4, following IVM, oocytes were inseminated with sperm from six bulls of known differing field fertility. To assess the rate of sperm penetration, oocytes were subsequently fixed every 3 h (up to 18 h) following IVF. Based on the results of Experiment 4, in Experiment 5, following IVM for 12, 18 or 24 h, COCs were inseminated with sperm from two sires with markedly different penetration speeds. After 24 h co-incubation, presumptive zygotes were denuded and placed in culture. The main findings from this study are that (1) the optimal duration of maturation of bovine oocytes in vitro to maximize blastocyst yield is 24 h, (2) sperm-oocyte co-incubation for 10 h is sufficient to ensure maximal blastocyst yields, (3) sperm concentrations of 0.25 x 10(6) and 0.5 x 10(6) spermatozoa/ml yielded significantly more blastocysts than any other concentration within the range of 0.01 x 10(6) 1 x 10(6) spermatozoa/ml, (4) there are marked differences in the kinetics of sperm penetration between sires and this may be a useful predictor of field fertility, and (5) the inferior development associated with slower penetration rates may in part be overcome by carrying out IVF at a time when the actual penetration is most likely to coincide with the completion of maturation.  相似文献   

16.
During the breeding season of 1991 a total of 608 blue fox vixens aged 1 to 6 years (2.3 +/- 0.1 years, mean +/- SEM) from 2 farms were artificially inseminated intrauterine once with frozen-thawed silver fox semen (1 ml dose containing a total of 150 million spermatozoa). The vixens were allocated to 3 different groups according to the time of insemination. Vixens in Group 1 (n = 203), Group 2 (n = 198), and Group 3 (n = 207) were inseminated on the first, second or third day after the peak value of vaginal electrical resistance, respectively. An overall conception rate of 75% (456 of 608) and 6.0 +/- 0.1 (mean +/- SEM) cubs per litter was obtained. Conception rates and mean litter sizes were significantly different between groups of vixens with respect to day of insemination (P = 0.02, Chisquare, Kruskall-Wallis Test). Vixens inseminated on the second day (Group 2) had the highest conception rate (81%) and the largest mean litter size (7.0 +/- 0.2 cubs) of the three groups, while those inseminated on the third day (Group 3) had the lowest conception rate and mean litter size (70%, 5.4 +/- 0.3 cubs).  相似文献   

17.
Ejaculates from 7 dogs were obtained on the same day and were pooled. This pooled semen was separated into 3 equal fractions and processed simultaneously, the only difference being in the extender used for freezing. The extenders were laiciphos (containing laiciphos, egg yolk, distilled water and glycerol- Group 1); Tes/Tris (containing Tes/Tris, egg yolk, distilled water and glycerol- Group 2); and biociphos (containing biociphos with glycerol in it, egg yolk and distilled water- Group 3). Spermatozoa were conditioned in 0.5ml French straws and presented normal characteristics before freezing and after thawing. The sperm concentration of the pooled was 683 x 10(6) sperm/ml; sperm motility was above 95%, the percentage of live spermatozoa was above 95% and was of good quality and mobility. Characteristics of the spermatozoa after thawing were the same for spermatozoa frozen with laiciphos and Tes/Tris. Mean sperm concentration was 201.5 +/- 4.95 x 10(6) sperm/ml, sperm motility was 65%, the percentage of live spermatozoa was 80% and the quality of motility.was good. Spermtozoa frozen with biociphos had the following post-thaw characteristics: sperm concentration was 201 x 10(6) sperm/ml, sperm motility was 50%, the percentage of live spermatozoa was 78% and the quality of mobility was medium. Abnormalities were less than 15% for all spermatozoa after thawing. Intrauterine artificial inseminations were performed by laparoscopic intrauterine insemination twice at Days 3 and 5 after the estimated LH peak in 15 normally cyclic Beagle bitches (5 per group) presenting normal hormonal profiles. There were no differences between groups. The females were inseminated with 1.0 ml of spermoatozoa (concentration of 200 x 10(6) sperm/ml) diluted with 1.0 ml of extender. A 60% pregnancy rate was obtained in bitches inseminated with frozen-thawed spermatozoa extended with laiciphos or Tes/Tris and 100% in bitches inseminated with spermatozoa extended with biociphos. Females inseminated with laiciphos, Tes/Tris and biociphos had a mean litter size of 5 +/- 2.6, 3 +/- 1 and 3.4 +/- 1.3 pups, respectively. This study demonstrated that post-thaw assessment of sperm characteristics is not the best technique for evaluating sperm fertility after freezing or for assessing different semen extenders.  相似文献   

18.
Nizański W 《Theriogenology》2006,66(2):470-483
One hundred fifty-two bitches of seven breeds were vaginally inseminated with fresh or frozen-thawed semen of 10 stud dogs of respective breeds. The semen was supplemented with prostatic fluid before insemination. In experiment 1 bitches of each breed were randomly assigned to three treatment groups, consisting of 29 females (group 1), 33 females (group 2) and 32 females (group 3). In group 1 bitches were inseminated into vagina with fresh semen using a bovine infusion pipette. In group 2 bitches were inseminated into vagina with fresh semen using the Osiris catheter. In group 3 bitches were inseminated with frozen-thawed semen with the Osiris catheter. The number of sperms in each insemination dose was adjusted to 300 x 10(6). In experiment two bitches were randomly assigned to two treatment groups, consisting of 30 females (group A) and 28 females (group B). In group A bitches were inseminated with fresh semen, whereas in group B with frozen-thawed semen. Osiris catheter was used in both groups. The total number of sperms was adjusted to provide 250 x 10(6) of progressively motile spermatozoa in each insemination dose. In experiment 1 the pregnancy rates/whelping rates were 86.2/82.8%, 81.8/81.8% and 59.4/59.4% for groups 1, 2 and 3, respectively. The differences between group 1 and 3 were statistically significant (p < 0.05). The litter sizes at birth/litter sizes at weaning were 5.8+/-2.3/5.4+/-2.0, 6.3+/-1.4/5.7+/-1.0 and 3.9+/-1.2/3.5+/-1.5 in groups 1, 2 and 3, respectively. The litter size at birth and at weaning was reduced (p < 0.05) when frozen-thawed semen was used for insemination (group 3). There were not significant (p > 0.05) differences in the litter size between groups 1 and 2. In experiment 2 pregnancy rates/whelping rates and litter sizes at birth/litter sizes at weaning were 86.7/86.7%, 60.7/57.1% (p < 0.05) and 6.1+/-1.6/5.7+/-1.7, 4.0+/-1.4/3.8+/-1.4 (p < 0.05) in groups A and B, respectively. This study shows that results of AI with a fresh semen using a bovine infusion pipette and the Osiris catheter are equivalent. The results of the use of the Osiris catheter for vaginal insemination of frozen-thawed dog semen extended with prostatic fluid after thawing are not encouraging. The pregnancy rate, whelping rate and litter size are reduced when frozen-thawed, prostatic fluid-supplemented semen is vaginally deposited using the Osiris catheter.  相似文献   

19.
The objectives were to compare embryo development rates after oocyte transfer with: (1) intrauterine or intraoviductal inseminations of fresh semen versus intraoviductal insemination of frozen semen; (2) intraoviductal versus intrauterine inseminations of cooled semen. In Experiment I, oocytes were transferred into the oviduct, and recipients were inseminated into the uterus with 1 x 10(9) fresh spermatozoa, or into the oviduct with 2 x 10(5) fresh or frozen-thawed spermatozoa. In Experiment II, semen was cooled to 5 degrees C before intrauterine insemination with 2 x 10(9) spermatozoa or intraoviductal inseminations of 2 x 10(5) spermatozoa (deposited with the oocytes). In Experiment I, embryo development rates were similar (P>0.05) for intrauterine versus intraoviductal inseminations when fresh semen was used (8/14, 57% and 9/11, 82%, respectively). However, embryo development rates were lower (P<0.05) when frozen spermatozoa were placed within the oviduct (1/12, 8%). In Experiment II, embryo development rates were higher (P<0.05) when cooled semen was used for intrauterine (19/23, 83%) versus intraoviductal (4/16, 25%) inseminations. We concluded that intraoviductal insemination can be successfully performed using fresh spermatozoa. However, the use of cooled and frozen spermatozoa for intraoviductal inseminations was less successful, and needs further investigation.  相似文献   

20.
Three experiments were conducted to examine the effects of incubating porcine spermatozoa in concentrated samples, to determine the viability of sperm encapsulated in microspheres and to evaluate the potential of microencapsulating porcine spermatozoa for use in artificial insemination. In Experiment 1, sperm incubated at 4, 15, 20 or 37 degrees C and at concentrations of 7.5, 15, 30, 60 or 120 x 10(6) sperm/ml lost motility over a 16-h incubation period. Sperm motility was significantly lower at 4 degrees C than at 15, 20 or 37 degrees C and was significantly higher in more concentrated samples. In Experiment 2, sperm were encapsulated in poly-lysine microspheres at concentrations of 30, 60 or 120 x 10(6) sperm/ml and incubated in vitro at 4, 15 or 20 degrees C. Unencapsulated samples were incubated at similar concentrations and temperatures and served as controls. Motility and percentage of sperm with intact acrosomes were estimated at 2, 4, 8 and 16 h of incubation. The procedure of encapsulation did not affect sperm motility or acrosomal morphology; however, there was an accelerated loss of motility in encapsulated samples. There were no differences in acrosomal morphology between the two groups across time. In Experiment 3, sperm were encapsulated at a concentration of 120 x 10(6) sperm/ml and 20 ml of capsules were inseminated into estrous sows. Uterine contents were flushed at 3, 6 and 24 h after insemination and examined for capsules. Capsules containing motile sperm were recovered from sows at 3 and 6 h, but not at 24 h. These results demonstrate that porcine spermatozoa can be encapsulated in microspheres and that these capsules can be inseminated into estrous females, but the sperm undergo an accelerated loss of motility in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号