首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-stranded DNA-dependent ATPase activity, consisting of two subunits of 83 kDa (p90) and 68 kDa (p70), was previously purified from HeLa cells (Vishwanatha, J.K. and Baril, E.F. (1990) Biochem 29, 8753–8759). Homology of the two subunits of single-stranded DNA-dependent ATPase with the human Ku protein (Caoet al. (1994) Biochem 33, 8548–8557) and identity of the Ku protein as the human DNA helicase II (Tutejaet al. (1994) EMBO J. 13, 4991–5001) have been reported recently. Using antisera raised against the subunits of the HDH II, we confirm that the Hela single-stranded DNA-dependent ATPase is the HDH II. Similar to the activity reported for Ku protein, ssDNA-dependent ATPase binds to double-stranded DNA and the DNA-protein complex detected by gel mobility shift assay consists of both the ATPase subunits. The p90 subunit is predominantly nuclear and is easily dissociated from chromatin. The p70 is distributed in cytosol and nucleus, and a fraction of the nuclear p70 protein is found to be associated with the nuclear matrix. Both the p90 and p70 subunits of the ATPase are present in G1 and S phase of the cell cycle and are rapidly degraded in the G2/M phase of the cell cycle.Abbreviations ssDNA single-stranded DNA - dsDNA double-stranded DNA - ATPase adenosine triphosphatase - HDH II human DNA helicase II - PGK 3-phosphoglycerate kinase  相似文献   

2.
The Ku autoantigen is a heterodimeric protein of 70- and 83-kDa subunits, endowed with duplex DNA end-binding capacity and DNA helicase activity (Human DNA Helicase II, HDH II). HDH II/Ku is well established as the DNA binding component, the regulatory subunit as well as a substrate for the DNA-dependent protein kinase DNA-PK, a complex involved in the repair of DNA double-strand breaks and in V(D)J recombination in eukaryotes. The effects of phosphorylation by this kinase on the helicase activity of Escherichia coli-produced HDH II/Ku were studied. The rate of DNA unwinding by recombinant HDH II/Ku heterodimer is stimulated at least fivefold upon phosphorylation by DNA-PKcs. This stimulation is due to the effective transfer of phosphate residues to the helicase rather than the mere presence of the complex. In vitro dephosphorylation of HeLa cellular HDH II/Ku caused a significant decrease in the DNA helicase activity of this enzyme.  相似文献   

3.
Purification and properties of human DNA helicase VI.   总被引:3,自引:3,他引:0       下载免费PDF全文
A novel ATP-dependent DNA unwinding enzyme, called human DNA helicase VI (HDH VI), was purified to apparent homogeneity from HeLa cells and characterized. From 327 g of cultured cells, 0.44 mg of pure enzyme was recovered, free of DNA polymerase, ligase, topoisomerase, nicking and nuclease activities. The enzyme behaves as a monomer having an M(r) of 128 kDa, whether determined with SDS-PAGE, or in native conditions. Photoaffinity labelling with [alpha-32P]ATP labelled the 128 kDa protein. Only ATP or dATP hydrolysis supports the unwinding activity for which a divalent cation (Mg2+ > Mn2+) is required. HDH VI unwinds exclusively DNA duplexes with an annealed portion < 32 bp and prefers a replication fork-like structure of the substrate. It cannot unwind blunt-end duplexes and is inactive also on DNA-RNA or RNA-RNA hybrids. HDH VI unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand.  相似文献   

4.
5.
6.
DNA helicases play an essential role in all aspects of nucleic acid metabolism, by providing a duplex-unwinding function. This is the first report of the isolation of a cDNA (1.6 kb) clone encoding functional DNA helicase from a plant (pea, Pisum sativum). The deduced amino-acid sequence has eight conserved helicase motifs of the DEAD-box protein family. It is a unique member of this family, containing DESD and SRT motifs instead of DEAD/H and SAT. The encoded 45.5 kDa protein has been overexpressed in bacteria and purified to homogeneity. The purified protein contains ATP-dependent DNA and RNA helicase, DNA-dependent ATPase, and ATP-binding activities. The protein sequence contains striking homology with eIF-4A, which has not so far been reported as DNA helicase. The antibodies against pea helicase inhibit in vitro translation. The gene is expressed as 1.6 kb mRNA in different organs of pea. The enzyme is localized in the nucleus and cytosol, and unwinds DNA in the 3' to 5' direction. The pea helicase interacts with pea topoisomerase I protein and stimulates its activity. These results suggest that pea DNA helicase could be an important multifunctional protein involved in protein synthesis, maintaining the basic activities of the cell, and in upregulation of topoisomerase I activity. The discovery of such a protein with intrinsic multiple activity should make an important contribution to our better understanding of DNA and RNA transactions in plants.  相似文献   

7.
Human DNA helicase VIII (HDH VIII) was isolated in the course of a systematic study of the DNA unwinding enzymes present in human cells. From a HeLa cell nuclear extract a protein with an Mrof 68 kDa in SDS-PAGE was isolated, characterised and micro-sequenced. The enzyme shows ATP- and Mg2+-dependent activity is not stimulated by RPA, prefers partially unwound 3'-tailed substrates and moves along the bound strand in the 5' to 3' direction. HDH VIII can also unwind partial RNA/DNA and RNA/RNA duplexes. Microsequencing of the polypeptide showed that this enzyme corresponds to G3BP, an element of the Ras pathway which binds specifically to the GTPase-activating protein. HDH VIII/G3BP is analogous to the heterogeneous nuclear ribonucleoproteins and contains a sequence rich in RGG boxes similar to the C-terminal domain of HDH IV/nucleolin, another DNA and RNA helicase.  相似文献   

8.
Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells.   总被引:7,自引:4,他引:3       下载免费PDF全文
Using a strand-displacement assay with 32P labeled oligonucleotide annealed to M13 ssDNA we have purified to apparent homogeneity and characterized a novel DNA unwinding enzyme from HeLa cell nuclei, human DNA helicase V (HDH V). This is present in extremely low abundance in the cells and has the highest turnover rate among other human helicases. From 300 grams of cultured cells only 0.012 mg of pure protein was isolated which was free of DNA topoisomerase, ligase, nicking and nuclease activities. The enzyme also shows ATPase activity dependent on single-stranded DNA and has an apparent molecular weight of 92 kDa by SDS-polyacrylamide gel electrophoresis. Only ATP or dATP hydrolysis supports the unwinding activity. The helicase requires a divalent cation (Mg2+ > Mn2+) at an optimum concentration of 1.0 mM for activity; it unwinds DNA duplexes less than 25 bp long and having a ssDNA stretch as short as 49 nucleotides. A replication fork-like structure is not required to perform DNA unwinding. HDH V cannot unwind either blunt-ended duplex DNA or DNA-RNA hybrids; it unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand, a polarity similar to the previously described human DNA helicases I and III (Tuteja et al. Nucleic Acids Res. 18, 6785-6792, 1990; Tuteja et al. Nucleic Acid Res. 20, 5329-5337, 1992) and opposite to that of human DNA helicase IV (Tuteja et al. Nucleic Acid Res. 19, 3613-3618, 1991).  相似文献   

9.
A DNA helicase induced by herpes simplex virus type 1.   总被引:18,自引:6,他引:12       下载免费PDF全文
We have identified and partially purified a DNA-dependent ATPase that is present specifically in herpes simplex virus type 1-infected Vero cells. The enzyme which has a molecular weight of approximately 440,000 differs from the comparable host enzyme in its elution from phosphocellulose columns and in its nucleoside triphosphate specificity. The partially purified DNA-dependent ATPase is also a DNA helicase that couples ATP or GTP hydrolysis to the displacement of an oligonucleotide annealed to M13 single-stranded DNA. The enzyme requires a 3' single-stranded tail on the duplex substrate, suggesting that the polarity of unwinding is 5'----3' relative to the M13 DNA. The herpes specific DNA helicase may therefore translocate on the lagging strand in the semidiscontinuous replication of the herpes virus 1 genome.  相似文献   

10.
We have identified a novel DNA helicase in humans that belongs to members of the superfamily I helicase and found that it contains a well conserved F-box motif at its N terminus. We have named the enzyme hFBH1 (human F-box DNA helicase 1). Recombinant hFBH1, containing glutathione S-transferase at the N terminus, was expressed in Sf9 cells and purified. In this report, we show that hFBH1 exhibited DNA-dependent ATPase and DNA unwinding activities that displace duplex DNA in the 3' to 5' direction. The hFBH1 enzyme interacted with human SKP1 and formed an SCF (SKP1/Cullin/F-box) complex together with human Cullin and ROC1. In addition, the SCF complex containing hFBH1 as an F-box protein displayed ubiquitin ligase activity. We demonstrate that hFBH1 is the first F-box protein that possesses intrinsic enzyme activity. The potential role of the F-box motif and the helicase activity of the enzyme are discussed with regard to regulation of DNA metabolism.  相似文献   

11.
X Li  C K Tan  A G So  K M Downey 《Biochemistry》1992,31(13):3507-3513
A DNA helicase (delta helicase) which partially copurifies with DNA polymerase delta has been highly purified from fetal calf thymus. delta helicase differs in physical and enzymatic properties from other eukaryotic DNA helicases described thus far. The enzyme has an apparent mass of 57 kDa by gel filtration and is associated with polypeptides of 56 and 52 kDa by SDS-polyacrylamide gel electrophoresis. Photo-cross-linking of the purified enzyme with [alpha-32P]ATP resulted in labeling of a polypeptide of approximately 58 kDa, suggesting that the active site is present on the larger polypeptide. Unwinding of a partial duplex requires a nucleoside triphosphate which can be either ATP or dATP but not a nonhydrolyzable analogue of ATP. Other ribo- and deoxyribonucleoside triphosphates have little or no activity as cofactors. delta helicase also has DNA-dependent ATPase activity which has a relatively low Km for ATP (40 microM). delta helicase binds to single-stranded DNA but has little or no affinity for double-stranded DNA or single-stranded RNA. Similar to replicative DNA helicases from prokaryotes and the herpes simplex virus type 1 helicase-primase, delta helicase translocates in the 5'-3' direction along the strand to which it is bound and preferentially unwinds DNA substrates with a forklike structure.  相似文献   

12.
13.
14.
A previously unreported single-stranded DNA-dependent nucleoside 5'-triphosphatase with DNA unwinding activity has been purified from extracts of Escherichia coli lacking the F factor. Fractions of the purified enzyme contain a major polypeptide of Mr = 75,000 which contains the active site(s) for both ATP hydrolysis and helicase activity. This is consistent with the results of gel filtration chromatography which indicate a native molecular mass of 75 kDa. The 75-kDa helicase has a preference for ATP (dATP) as a substrate in the hydrolysis reaction and requires the presence of a single-stranded DNA cofactor. The helicase reaction catalyzed by the enzyme has been characterized using an in vitro strand displacement assay. The 75-kDa helicase displaces a 71-nucleotide DNA fragment in an enzyme concentration-dependent and time-dependent reaction. The helicase reaction depends on the presence of a hydrolyzable nucleoside 5'-triphosphate (NTP) suggesting that NTP hydrolysis is required for the unwinding activity. In addition, the enzyme can displace a 343-nucleotide DNA fragment albeit less efficiently. The direction of the unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The molecular size of this helicase and the direction of the unwinding reaction are similar to both helicase II and Rep protein. However, the 75-kDa helicase has been shown to be distinct from both helicase II and Rep protein using immunological, physical, and genetic criteria. The discovery of a new helicase brings the total number of helicases found in E. coli cell extracts (lacking F factor) to five.  相似文献   

15.
Helicases are ubiquitous molecular motor proteins that have an important role in the metabolism of nucleic acids. The gene encoding a helicase was cloned from the human malaria parasite Plasmodium falciparum. The polypeptide of 398 amino acid residues has a molecular mass of 45 kDa, contains striking homology to eukaryotic translation initiation factor 4A (eIF4A) and all the conserved domains of the DEAD-box family. The recombinantly expressed and homogeneous P. falciparum protein PfH45 is an ATP-dependent DNA and RNA helicase, with ATPase and ATP-binding activities. PfH45 is a unique bipolar helicase that contains both the 3' to 5' and 5' to 3' directional helicase activities and anti-PfH45 antibodies curtail all its activities. PfH45 is expressed in all the intraerythrocytic developmental stages of the parasite and has a role in translation. Parasite cultures treated with PfH45 double-stranded RNA or purified immunoglobulins against PfH45 exhibited approximately 60% and approximately 55% growth inhibition, respectively. This inhibitory effect was due to interference with expression of the cognate messenger and down-regulation of synthesis of PfH45 protein in the parasite culture and was associated with morphologic deformation of the parasite. These studies indicate that PfH45 is an indispensable enzyme that is essential for growth, and probably survival, of P. falciparum.  相似文献   

16.
The Dna2 protein is a multifunctional enzyme with 5'-3' DNA helicase, DNA-dependent ATPase, 3' exo/endonuclease, and 5' exo/endonuclease. The enzyme is highly specific for structures containing single-stranded flaps adjacent to duplex regions. We report here two novel activities of both the yeast and human Dna2 helicase/nuclease protein: single strand annealing and ATP-independent strand exchange on short duplexes. These activities are independent of ATPase/helicase and nuclease activities in that mutations eliminating either nuclease or ATPase/helicase do not inhibit strand annealing or strand exchange. ATP inhibits strand exchange. A model rationalizing the multiple catalytic functions of Dna2 and leading to its coordination with other enzymes in processing single-stranded flaps during DNA replication and repair is presented.  相似文献   

17.
18.
Morozov VE  Fuller BG 《IUBMB life》1999,48(6):593-599
We describe a novel 5' to 3' single-strand exonuclease activity exhibited by a Ku preparation purified from a human cell line. The enzyme removes 5' single-strand extensions from duplex DNA molecules. The exonuclease and helicase activities respond reciprocally to changes in ATP concentrations: Nuclease activity is inhibited at the ATP concentrations that are optimal for the helicase. The exonuclease activity does not require divalent cations. The potential implications of the exonuclease activity findings for repair of double-strand breaks and recombination processes are discussed.  相似文献   

19.
Although DNA helicases play important roles in the processing of DNA, little is known about the effects of DNA-interacting ligands on these helicases. Therefore, the effects of a wide variety of DNA-binding ligands on the unwinding and ATPase reactions catalyzed by Escherichia coli DNA helicase II were examined. DNA minor groove binders and simple DNA intercalators did not inhibit helicase II. However, DNA intercalators, such as mitoxantrone and nogalamycin, which position functionalities in the major groove upon binding duplex DNA, were potent inhibitors of helicase II. To determine the mechanism by which mitoxantrone inhibited helicase II, the unwinding and DNA-dependent ATPase activities of helicase II were measured using a spectrum of double- and single-stranded DNA substrates. Using either a 71-base pair (bp) M13mp7 partially duplexed DNA substrate or a 245-bp bluntended, fully duplexed DNA substrate, the apparent Ki value for inhibition by mitoxantrone of both the unwinding and ATPase reactions was approximately 1 microM for both substrates, suggesting that the mechanism of inhibition of helicase II by mitoxantrone is the same for both substrates and requires the presence of double-stranded structure. To strengthen this conclusion, the ability of mitoxantrone to inhibit the DNA-dependent ATPase activity of helicase II was determined using two single-stranded substrates, poly(dT) and the 245-bp substrate after heat denaturation. Using either substrate, mitoxantrone inhibited the ATPase activity of helicase II far less effectively. Thus, these results indicate that the intercalation of mitoxantrone into double-stranded DNA, with accompanying placement of functionalities in the major groove, generates a complex that impedes helicase II, resulting in both inhibition of ATP hydrolysis and unwinding activity. Furthermore, we report here that DNA-binding ligands inhibit the unwinding activity of helicases I and IV and Rep protein from E. coli, demonstrating that the inhibition observed for helicase II is not unique to this enzyme.  相似文献   

20.
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3′ to 5′ direction along the bound strand in an ATP- and Mg2+-dependent fashion. The enzyme is not processive and can also unwind partial RNA–RNA duplexes such as HDH IV and HDH VIII. The Mr determined by SDSPAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the ‘FUSE’ DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号